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Preface

When Academic Press first suggested that we might write a book about Lucid, we readily agreed.
Producing a book would be relatively easy (we thought); we could simply collect a number of
existing papers and reports, add a few editorial comments, and that would be that. Once that
was taken care of, we could then move on to some more ambitious project. However, when we
went back and reread the papers and reports, we realized that our initial plan was unworkable.
Lucid was (and still is) a very new development; nevertheless, it had already evolved so much that
the various papers we proposed to include had become incompatible. Some of the changes were
of a detailed or technical nature, but on the whole they reflected a radical shift in the underlying
motivation.

Lucid was born in 1974 at the University of Waterloo in Canada, where at the time both
authors were teaching in the Faculty of Mathematics. The original goals in developing Lucid were
very modest. We wanted to show that conventional, ‘mainstream’ programming could be done in
a purely declarative language, one without assignment or goto statements. We felt then (and still
do now) that real “structured programming” required first the elimination of both these features
and that only then would program verification become a practical possibility.

Of course we knew that in principle any programming problem could be solved by using
only recursion in a “functional” or “applicative” language such as LISP. We felt, however, that
this approach was not really credible. The purely recursive solutions cannot (apparently) use
iteration and therefore exclude most of the algorithms used in real, every-day programming. (Some
exponents of recursive programming consider “tail recursion” to be the same as iteration, but such
programs, with their clumsy parameter lists, cannot really be used for everyday programming.)
Languages such as LISP do, in fact, allow loops to be written—but only by allowing assignment
back into the language (as LISP does with its prog feature). Our goal therefore was to show that
iterative algorithms could be expressed in a declarative (or “nonprocedural”) language, without
introducing ‘dirty’ features like prog.

Our starting point was the observation that the information contained in the assignment state-
ments

I := 1;

...

I := I + 1;

could be conveyed by the declarations

first I = 1;

next I = I + 1;

The form of these declarations suggested that first and next could be used as operations and
that these operations could be applied to expressions as well as simple identifiers. This in turn
opened up the possibility that intuitively true equations like next(x + y) = next(x) + next(y)
could be used to reason algebraically about dynamic aspects of programs.

At first, however, it was not clear what values were being equated. Work on Lucid came to

vii



viii PREFACE

a halt for several months until we finally realized that variables and expressions ought to denote
infinite sequences (or histories) of individual data values.

Once this principle was established, we were, in fact, able to show that at least simple iterative
algorithms could be expressed in a natural way by sets of equations. We were also pleased to
confim that reasoning about programs was indeed much simpler. One advantage, not the least,
was that the language in which assertions were formulated was an extension of the programming
language. The statements in a program were already true assertions about the values of variables
in the program, and they constituted the axioms from which deeper properties could be derived.

This initial work did show that in principle iteration could be made respectable. The original
Lucid was, however, a very simple language and could express only very simple algorithms. If we
really wanted to displace the mainstream, imperative languages, we would have to show that more
realistic applications could be programmed in the equational style. We therefore began considering
extensions of the language which would allow us to attempt more ambitious problems.

The first feature added was nesting (of loops) and that proved to be relatively easy—we simply
allowed the value of a variable to depend on more than one time parameter. (A simple infinite
sequence could be thought of as a value which depended on one parameter, the position in the
sequence, which we called “time”.) After nesting, the most obvious step was to add arrays, but here
things went awry. We spent a great deal of effort trying to find a simple algebra of arrays (along
the lines of APL), with little success. We realize now that the main problem was our insistence
that these arrays be finite, and of finite dimension. We knew that infinite arrays had much more
pleasant properties, but we could not fit them into the conventional model of computation which
still dominated our thinking.

We therefore suspended our work on arrays while we considered the other most obvious ex-
tension, namely, user-defined functions. This one extension proved to be the simplest of all; yet
it was more powerful than we had ever expected. We discovered that functions defined by using
the special Lucid operations can be thought of as filters (continually operating processes which
transform data streams). Our language now had a coroutine-like facility. Coroutines were known
to be powerful programming tools but were thought to be very complicated. In Lucid, coroutines
came almost for free!

The success of user-defined functions strengthened our confidence in the Lucid approach. Fi-
nally, we understood that there are other forms of repetition than those expressed by conventional
imperative loops. We began to realize that underlying the new approach to programming was a
new approach to computation itself—the dataflow approach. From then on, Lucid was not just a
new way of expressing old algorithms. It became a new way of expressing new (dataflow) algo-
rithms. In a sense, our original objective had become reversed. Originally, we wanted to preserve
the conventional approach to computation by showing that it could be made mathematically re-
spectable. Now, we attempted to show that the old way could be eliminated and replaced by a
whole new world view.

Naturally, we make no claims to having discovered dataflow and the dataflow approach to
computation. For this, many people share the credit, people such as M. McIlroy, J. Dennis and
G. Kahn. We owe a debt to the developers of UNIX,1 who have provided practical proof that
dataflow is a powerful programming technique.

The book as it now appears therefore bears little relationship to the book which we originally
planned to write (or rather, assemble). The emphasis is now on Lucid as a practical tool, rather
than as an object of formal study. We still believe that program verification is important and
is much easier in a functional language, but we treat the subject very briefly and in an informal
way (transformation gets rather more attention). There seems little point in demonstrating the
correctness of programs written in a language unfit for realistic problems, one which is based on an
unworkable model of computation. The primary objective of this book is therefore to prove that
dataflow is a real alternative to sequential/imperative computing and that dataflow algorithms
can be expressed naturally and concisely in Lucid. We hope that we have succeeded, but we will
let you, the reader, be the judge.

1UNIX is a trademark of AT&T Bell Laboratories.
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We would ask, though, that before you deliver your verdict, you obtain the excellent pLucid
interpreter (or “evaluator”) written by A. Faustini2 (based on a first draft by C. Ostrum). The
language is rich enough to allow interesting applictions to be programmed, and the error-handling
is excellent. The interpreter is (like most interpreters) big and sometimes slow, but it is efficient
enough to be usable for some applications. The example programs given in this book have all
(except for those in extended Lucid) been tested and so should work for you as well. The only
problem is that the present version of the interpreter is written in C and requires UNIX. Those of
you who are forced to use older, more primitive operating systems unfortunately will have to wait
a while longer before you can gain first-hand experience to dataflow programming in Lucid.

We would like to thank the funding agencies that supported the development of Lucid, and
the production of this book. Initially this was done completely by the Canadian Science Research
Council (subsequently the Natural Sciences and Engineering Research Council), even after one
of the two of us (Bill Wadge) moved to the University of Warwick, in England. Eventually he
obtained funding from the Science and Engineering Research Council of the United Kingdom. We
are grateful for the help of both these bodies.

Collaboration across the Atlantic is not the easiest thing, and the development of the language
was probably slower than necessary. (It did, however, enable us to preface lectures about Lucid
with the observation that it was being developed by an Englishman working in Canada and a
Canadian working in England.) At present, Ed Ashcroft is at SRI International, in California,
and Bill Wadge at the University of Victoria, in British Columbia, Canada, and so now the authors
are at least on the same side of the same continent.

We also would like to take this opportunity to thank the many people who have contributed
to the development of Lucid and to the production of this book. These include (in alphabetical
order) Thomas Cargill, Mansour Farah, Tony Faustini, Patrick Gardin, Christoph Hoffman, Steven
Matthews, David May, Calvin Ostrum, Paul Pilgram and Ali Yaghi. Our special thanks go to Tony
Faustini, Ali Yaghi and Steve Matthews, who wrote the pLucid manual and consented to having
it included in the appendix. Extra special thanks go to Calvin Ostrum and Tony Faustini. Calvin
became interested in Lucid as a second-year undergraduate student at Waterloo and singlehandedly
produced an interpreter, written in C, in his third year. This interpreter forms the basis of the
pLucid interpreter, which Tony Faustini developed while a research assistant at Warwick. Tony
also contributed greatly to the design of pLucid itself.

Finally, we would like to thank the many students at the Universities of Warwick, Waterloo
and Victoria who registered in courses in which Lucid was taught. Some of them were cruelly
treated by early versions of pLucid and its interpreter, but they showed that mere mortals are
capable of writing dataflow programs.

December 1984 W. W. Wadge
Victoria, Canada E. A. Ashcroft

2Contact A. Faustini, Department of Computer Science, Arizona State University, Tempe, Arizona 85297, USA.



Chapter 1

Introduction

Lucid is a programming language, but it is very unlike any of the programming languages (BASIC,
PASCAL, even LISP) with which the reader might already be familiar. A simple Lucid program
which describes a computation involving rational numbers follows. The program computes a
‘running’ root mean square of its input; in general the n-th number output is the root mean square
(square root of the average of the squares) of the first n numbers input.

sqroot(avg(square(a)))
where

square(x) = x ∗ x;
avg(y) = mean
where

n = 1 fby n + 1;
mean = first y fby mean + d;
d = (next y −mean)/(n + 1);

end

sqroot(z) = approx asa err < 0.0001
where

Z is current z;
approx = Z/2 fby (approx + Z/approx )/2;
err = abs(square(approx )− Z);

end

end

Readers with some knowledge of mathematics (or even just algebra) can probably form a good
guess as to how the program works, even if this is the first Lucid program they have ever seen.
The program uses the function square to form the squares of the numbers input, the function avg
to generate a running average of these numbers and the function sqroot to generate the square
roots of these averages.

The computations described by the above program can be understood as taking place in a
simple network with three components connected in series.

square avg sqroot
input // squares // averages // output //

This network corresponds to the Lucid expression sqroot(avg(square(a))) and the three com-
ponents correspond to the three functions defined in the program. The Lucid programmer would
imagine an endless stream of input values coming in from the left, along the arc labeled ‘input ’
(these are in fact the values of the variable a). These values pass through (and are transformed
by) the three ‘components’ or ‘black boxes’ and are sent to the ‘outside world’ on the line labeled
output . The output of the program is this last stream of values; this stream of values might be sent

1



2 CHAPTER 1. INTRODUCTION

to a printer, or perhaps stored in a file, depending on how the program is being used. The ‘parti-
cles’ of data passing through this system are called ‘datons’, and the components through which
they pass (and by which they are transformed) are called ‘filters’, by analogy with electronics.

The input values pass one by one through the first ‘component’ or ‘black box’ labeled square.
The square component computes the squares of the values it receives, one by one as they arrive,
and sends the squared values down the ‘line’ labeled squares—in the order the original values were
received.

The squares travel down the line labeled squares until they encounter the second black box, the
one labeled avg . This component receives these numbers one by one and with each one computes
the average of all the inputs received so far. The new averages are sent one by one, as they are
computed, down the line labeled averages.

These averages are fed into the third black box, the one labeled sqroot . This component
calculates the square roots of the numbers it receives as it receives them, and passes these roots
one by one down the line labeled output in the order they were produced.

Those readers who are mathematically inclined (or who have some knowledge of programming)
can probably also guess how the individual components carry out their calculations. The definition
of square is based on the obvious idea of multiplying together two copies of each input. The
definition of the avg function uses a more sophisticated algorithm. It does not keep a running total
of the values of its arguments; instead, it increments the previous value of the computed average
by an appropriate amount. Finally, the function sqroot defined inside the program computes the
square root of its argument (somewhat näıvely) by using Newton’s method. It generates better
and better approximations until the desired accuracy is achieved.

Naturally, the three components in this network can carry out their computations in parallel,
i.e., they can all be working simultaneously. There is no need for the square filter to consume
all its input and calculate all the squares before the avg filter can begin forming the averages.
In general the avg filter can be processing one item while its upstream neighbor is preparing its
next input and the downstream neighbor is working on its last output. The filters in the network
may even work at different rates; there is no need to assume that their activities are synchronized,
i.e., that they all read inputs simultaneously and produce outputs simultaneously. If some of the
filters are capable of processing their data faster than others, the worst that can happen is that
some are kept idle waiting for input or that datons begin to queue up on input lines waiting to
be processed. Neither of these phenomena affect the final series of values output by the program.
They affect only the rate at which these values are produced and the resources (such as space for
storing queued datons) required to produce the output.

1.1 What Makes Lucid Run?

At this point the reader might begin to suspect that we are reading rather more into the program
than is actually there. These suspicions are basically correct; the computational activity described
is really only one interpretation of the program. Most conventional programming languages require
the programmer to supply explicit information about any dynamic activity (such as the flow of data
through a network) which the program is supposed to generate. The reader with experience in such
languages would probably expect that dataflow networks will be described in some cumbersome
and appalling jargon in which it is specified which lines are attached to which filters, which lines
are input and output, initial contents of arcs, and so on. For example, something like

NETWORK DIVISION.

CONNECT PROGRAM-INPUT TO SQUARE-INPUT

CONNECT SQUARE-OUTPUT TO AVG-INPUT

CONNECT AVG-OUTPUT TO SQROOT-INPUT

CONNECT SQROOT-OUTPUT TO PROGRAM-OUTPUT

The Lucid programmer, however, does not directly manipulate lines and filters. Instead, the
Lucid user specifies the data to be processed and the transformations to be applied. Consider,
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for example, the expression sqroot(avg(square(a))). It is obvious from the expression itself that
the transformation square is to be applied to the data a, that the transformation avg is to be
applied to the result, and that a third transformation sqroot is to be applied to this second result.
Furthermore, the expression itself (taken as a whole) denotes or represents the final result of
applying all three transformations in the order indicated. Since this final result is the output of
the program, there is no need for a separate ‘output’ statement or declaration. In the same way,
the variable a (representing the original input to the filters) is not defined in the program. The
data which the variable a represents is arbitrary (can be anything); it can therefore be taken as
the input to the program.

We see then that the expression sqroot(avg(square(a))) contains (when taken with the auxil-
iary definitions following the where) all the information the programmer needs to provide. This
expression, together with its accompanying where clause, specifies exactly what the output is to
be—namely, the value of the expression. At the same time, however, it also specifies to a certain
extent just how this output is to be obtained—namely, by applying in turn the transformations
square, avg and sqroot to the input. There is therefore no absolute need to talk about boxes and
lines directly; the network given above can be considered as simply a graphical representation of
the given expression. And there is certainly no need to develop a second textual form (like the
hypothetical ‘program’ given earlier) to specify a graph which itself is simply a two-dimensional
specification of the original expression.

A program in Lucid is therefore simply an expression, together with definitions of the trans-
formations and data (other than input) referred to in the expression. The output of the program
is simply the data denoted by the program as an expression, i.e., the value of the program. Lucid
has more in common with school algebra than with BASIC or COBOL.

At this point it is now the turn of the more mathematically inclined readers to be skeptical.
Lucid certainly looks like conventional mathematics, but appearances can be deceptive. After
all, many programming languages use mathematical notation but in a way that (as we shall see)
is anything but conventional. Consider again the expression sqroot(avg(square(a))). The filters
sqroot and square can certainly be understood as conventional mathematical functions operating
on numbers, but what about avg? What is the result of applying avg to a number? What is the
‘average’ of 8? In mathematics, the value a function returns is determined by the value given it,
i.e., by its argument. According to the description given earlier, however, the avg filter supposedly
remembers the average of the previous values and updates this remembered average every time
it is given a new argument. Who ever heard of a mathematical function with a memory? Surely
this is a dynamic concept peculiar to computer science.

The apparent contradiction disappears, however, if we recall that the ‘data’ transformed by a
filter like avg is more than just a single number. The average filter, in the course of its working
lifetime, accepts a whole series of numbers s0, s1, s2, . . . . This is the total input to the filter. In
the same way, the filter does not produce just a single number, it produces another whole series
a0, a1, a2, . . . . This is the total output of the filter. Therefore, if we want to think of the filter as
computing a conventional mathematical function, then the function must be given as its argument
the entire series s0, s1, s2, . . . and must return as its result the entire series a0, a1, a2, . . . . It must
be a function from the set of sequences of inputs to the set of sequences of outputs. It is not hard
to see that there is in fact a sequence function f which specfies the input/output transformation
performed by the avg filter. Given a series s, f(s) is simply the series〈

s0, (s0 + s1)/2, (s0 + s1 + s2)/3, . . .
〉

of averages (everything is simpler if we use only infinite sequences).
This is how Lucid resolves the apparent conflict between the static nature of conventional

mathematics and the dynamic nature of programming. Expressions in Lucid really are expressions
in the mathematical sense, and the functions referred to in the expressions really are functions
in the strict sense of the word. Expressions have as their values not individual data items but
sequences thereof; and functions map sequences to sequences. For the sake of uniformity even
‘conventional’ expressions and transformations denote sequences and sequence functions. Thus
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the expression 2 ∗ 3 has the sequence

〈6, 6, 6, 6, 6, . . .〉

as its value, and the transformation square corresponds to the function which maps

〈s0, s1, s2, . . .〉 to
〈
s20, s

2
1, s

2
2, . . .

〉
We have already seen that an expression in Lucid can be thought of as denoting the output of a
network of filters involving the transformations referred to in the program. The value of such an
expression is an infinite sequence, one which can be thought of as a complete record or history of all
the individual values produced by the network, in the order they were produced. If the expression
in question is a program, the infinite sequence is a record or history of the entire output activity of
the program. For example, if the value of a program P is the infinite sequence 〈2, 3, 5, 7, 11, 13, . . .〉
of all prime numbers (in order), then P can be thought of as a program which lists or enumerates
the primes. When such a prime-generating program is run it will produce the number 2 first of
all, then 3, then 5, 7, 11 and so on—although not necessarily at a constant rate.

The statements appearing in the Lucid program, for example,

mean = first y fby mean + d;

really are equations, and they specify the value which the variable has in the region of the program
in which the definition is valid. The value of a variable is also an infinite sequence of data items, one
which can be thought of as a complete record of the values produced by the network corresponding
to the expression on the right-hand side of the definition. (In thinking this way we must not
assume that these values are produced at constant rate, or that the production of these values is
synchronized with that of other variables or of the output.)

A program may use variables which have no definitions in the program (and which do not,
like y in the rms (root mean square) program, serve as ‘dummy’ arguments in function definitions).
These variables are called input variables; the value of a program will in general depend on the
values of these variables. The values given the input variables constitute the input to a Lucid
program. These values are also infinite sequences, and can be thought of as a complete record of
all the data items fed into the program in the order in which they were entered. Again, one must
not assume that the rate at which data items are read in as input by a program is necessarily
constant or that it is necessarily the same as the rate at which data items are written out as
output.

In the rms program above there is only one input variable, namely the variable a. If the input
to the example program (i.e., the value of a) is the sequence 〈3.5, 3.2, 3.9, 4.1, 3.8, . . .〉, then the
output (i.e., the value of the program as an expression) is the sequence 〈3.5, 3.35, 3.54, 3.69, . . .〉.
Thus, for example, the third number output is 3.54, which is

√
(3.52 + 3.22 + 3.92)/3. This is just

what one would expect from the network described above.

In a sense the ‘dynamic’ aspect of Lucid is an illusion. Lucid is really just a calculus of
static histories. Obviously we go to some lengths to preserve the illusion: by using suggestive
names (like next), by using the ordinary symbols (like +) to denote the pointwise operations
on sequences, and above all by avoiding explicit reference to sequence indices. This ‘illusion’ is
absolutely indispensable as a programming aid. It is almost impossible to write programs while
using a strictly static viewpoint, i.e., while interpreting Lucid’s history sequences as just another
data type like strings or lists. For that matter, the dynamic viewpoint is not all that illusory. A
Lucid program will eventually be run, and the implementation will probably involve dataflow or
some simulation of dataflow. We could just as easily argue that the static, infinite histories are
‘illusory’ and that the actual operational activity is the ‘reality’. The dataflow interpretation of
Lucid is no more illusory than the interpretation of a set of differential equations in terms of a
dynamically changing system. The main difference is that the ‘time variable’ in calculus varies
continuously, whereas Lucid’s ‘iteration time’ changes discretely.
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1.2 Imperative Programming

The rms program comes out very differently when written in an imperative language like PASCAL,
even when roughly the same approach is used. The following PASCAL program corresponds more
or less to the Lucid program given in the preceding section. It performs the same task; i.e., it
repeatedly reads in rational numbers and repeatedly writes out the root mean square of all its
input ‘to date’. Like the Lucid program, it is intended to run indefinitely.

program rms(input, output);

var mean, a: real;

n: integer;

function square(x: real): real;

begin

square := x * x

end;

function newavg(y: real): real;

var d: real;

begin

n := n + 1;

d := (y - mean)/n;

mean := mean + d;

newavg := mean

end;

function sqroot(Z: real): real;

var approx: real;

err: real;

begin

approx := Z/2;

err := abs(Z - approx * approx);

while err > 0.0001 do

begin

approx := (approx + Z/approx)/2;

err := abs(Z - approx * approx)

end;

sqroot := approx

end;

begin

n := 1;

read(a);

mean := square(a);

writeln(abs(a));

while true do

begin

read(a);

writeln(sqroot(newavg(square(a))))

end

end.

There are some obvious similarities between the Lucid program and the PASCAL ‘version’ just
given. Both languages use variables (i.e., ‘identifiers’ like approx ) and allow expressions [such
as (x −mean)/n] to be built up with arithmetic and other operations—much as in conventional
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mathematics. In both languages variables are thought of as taking on a whole series of data items
as their values, and not just one single data item as in ordinary algebra. Also, both languages allow
the programmer to define something like the functions of ordinary mathematics, using ‘dummy
arguments’ in much the same way as they are used in ordinary mathematics. In short, both
languages are notationally much like ordinary mathematics but with an extra ‘dynamic’ aspect.
This dynamic aspect reflects the fact that programs are intended to bring about computation, and
computation is an inherently dynamic activity. Both use at least the notation of mathematics to
specify a dynamic process.

The two languages are, however, very different. They appear more similar than they really
are because PASCAL and Lucid use similar mathematical symbolism, but these symbols are used
in very different ways. The statements in an imperative language like PASCAL are commands,
not definitions. The most basic command of all is the assignment statement, and all imperative
languages are based on some form of assignment. Assignment statements such as FORTRAN’s
x = b + c or PASCAL’s x := b + c superficially resemble definitions (in the form of equations)
as found in mathematics, but in fact they are very different. In PASCAL an identifier denotes
a storage location. These storage locations can be thought of as ‘buckets’ capable of holding one
data item at a time. In general a storage location will contain different items at different times
during the computation. Any given item, however, will remain in the location until the computer
(under the control of the program) removes the old value and replaces it with a new one.

An assignment statement is an order to a machine to perform just such an ‘update’ on the
storage location named on the left-hand side of the assignment statement. The machine ‘executes’
an assignment command by evaluating the expression on the right-hand side and placing the result
in the named storage location. The name of the location being updated may itself appear on the
right-hand side, as in the PASCAL assignment mean := mean + d. A statement of this form
certainly makes sense as a command. This statement orders the machine to increase the value
stored in location mean by the amount stored in location d. Interpreted as a definition, however,
the statement is nonsense (unless the value of d happens to be 0, in which case it is pointless).

Imperative languages have other kinds of basic commands (such as input/output statements)
but no simple command can accomplish much on its own. The imperative languages therefore
have in addition a large number of “control structures” for building up complicated commands
out of simpler ones. These ‘constructs’ allow the imperative programmer to specify that a number
of simpler commands are to be ‘executed’ in a particular order; or that one command is to be
executed repeatedly until some condition is true; or that one of a number of commands is to
be executed with the choice depending on the outcome of a corresponding number of tests. In
addition, the imperative programmer is allowed to give names to certain commands so that they
can be ‘called’ using these names. These “procedures” can be called with parameters, and can
also return results (in which case they are called “function procedures” or simply “functions”).

In short a PASCAL program specifies, in great detail, exactly how the desired values are to
be computed—and not just what these values must be. Imperative programmers think of the
computer as executing the program by jumping around the text of the program, executing and
re-executing the program’s assignment statements in the order specified by the program’s control
structure. The programmer in an imperative language is concerned primarily with specifying the
action which a machine is required to perform, rather than with the values (data) which the
machine is required to produce.

Lucid programs do have statements which somewhat resemble assignment statements. Some
of the ‘assignments’, such as x = a + b, seem conventional enough, but others such as

i = 1 fby i + 1; or d = x− next x;

use mysterious ‘temporal’ operators not found in conventional languages. On the other hand,
even the most harmless assignments such as k = 2 ∗ k+ 1 give totally unexpected results in Lucid.
Within a given ‘block’ only one ‘assignment’ to any particular variable is allowed, and (strangest
of all) the order of the statements within the given block is irrelevant—does not affect the meaning
of the program. In Lucid the definition is the only kind of statement; there are no read or write



1.3. CONTROL FLOW VERSUS DATAFLOW 7

statements, no goto statements, no do, while or for statements, no if statements—in short, no
control statements of any kind. Lucid allows programmers to define their own functions, but there
are no calling conventions (or rather, exactly one). Functions are incapable of having side effects.
They really are functions, in the mathematical sense of the word. Furthermore, since there are no
commands and no side effects, there are no procedures.

Lucid retains some of the dynamic concepts used by the PASCAL programmer (iteration),
adds others (filtering), but completely drops the idea of “flow of control”. In the PASCAL pro-
gram above, the successive values of the variable approx are generated by the execution of two
assignment statements (the second one being executed over and over again). In the Lucid program,
however, the entire series of values of the corresponding variable approx is specified by the single
definition of the variable in question. It makes no sense to say that a machine has reached a certain
textual point in the execution of a Lucid program—in fact the word “execution” itself is not really
appropriate. A Lucid program is an expression, and its output is its value (as an expression). A
machine which is running a Lucid program is therefore evaluating it, not executing it.

1.3 Control Flow versus Dataflow

The differences between the Lucid and PASCAL version are more profound than just the differences
between two languages. The designs of the two languages reflect the structure or “architecture”
of the machinery which is used to implement the language. The different approaches of Lucid and
PASCAL reflect two fundamentally different modes of computation, i.e., two very different ways
of computing the results desired.

Programs in an imperative language like PASCAL are intended to be run on what are known as
“von Neumann” machines (named after the mathematician John von Neumann). A von Neumann
machine consists of a small processor attached to a big memory, this memory being a vast collection
of storage locations.

CPU

mean 23.07854

a 8.6000

n 7.0

approx 13.5

d 0.036

Data items are fetched one by one from the memory, are sent to the central processing unit (CPU)
in which the actual computation is performed, and then the results are returned one by one to
their ‘cells’. The basic philosophy of the von Neumann machine is that data is ‘normally’ at rest.
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Often the analogy of a bank security box or even a jail is used. The data items are safely locked
up in individual cells and are processed one at a time. The CPU is controlled by a program
which is itself usually stored in the memory. A program is a series of “machine instructions”
which specify which of a small number of basic operations (such as fetching the contents of a
given location, performing a multiplication, storing a result in a given location) the CPU is to
perform. The CPU normally executes the instructions in the order they are stored in memory,
but some special instructions can alter this order so that (for example) a part of the program is
executed repeatedly. The two fundamental concepts of the von Neumann architecture are those of
“command” and “storage location”; it is on these same concepts that the design of the imperative
languages is based.

One alternative form of computation, which we call “dataflow”, is based on the principle of
processing the data while it is in motion, ‘flowing’ through a dataflow network. A dataflow network
is a system of nodes and processing stations connected by a number of communication channels or
arcs. The network given for the rms program is very simple; but in general the processing stations
may have more than one input and/or output port, they will not be connected sequentially (in a
line), and the network may even have loops in it. There are a number of research groups throughout
the world working on dataflow machines and architectures. See, for example, Dennis, Misunas and
Leung (1977), Davis (1978), Keller, Lindstrom and Patil (1979), Arvind and Kathail (1981) or
Watson and Gurd (1982).

Dataflow, even as we have just defined it, is a very vague term and includes endless variations
on the general principle of processing data while it is in motion. One particularly simple and
important class is what we call pipeline dataflow. In a pipeline net the datons flow down the arcs
in exactly the order they are produced; there is no ‘overtaking’, and no labeling of datons with
time information. Nodes in a pipeline dataflow net are not required to produce output at the
same rate at which it is consumed. We will be especially interested in a restricted form of pipeline
dataflow which we call “functional” or “pure” pipeline dataflow. In this kind of dataflow the filters
in a net are required to be functional ; a filter is functional if the entire history of its output is
determined by the entire history of its input. Functionality implies that (roughly speaking) there
is no randomness in the filter and that the rate of arrival of input to the filter affects only the rate
of production of the output.

The first clear statement of the ‘pipeline dataflow’ was given by Conway (1963) more than
twenty years ago. The use of dataflow as a programming or program-structuring technique has
been developed by a number of workers, including McIlroy (1968), Kahn and MacQueen (1977)
and Yourdon and Constantine (1979). In 1974 Gilles Kahn made an extremely important discovery
[see Kahn (1974)], namely that the behavior of a pure pipeline functional net is exactly described
by the fixed point of a corresponding set of equations. [Faustini (1972) established the validity
of the “Kahn principle” for a very general operational model.] Kahn’s work stimulated a further
interest in the theoretical aspect of dataflow, mainly in the problem of extending his approach to
handle nets with nonfunctional nodes.

The dataflow approach to program construction (McIlroy calls it “plumbing”) has proved to be
very effective. The great advantage of the dataflow approach is that ‘modules’ interact in a very
simple way, through the pipelines connecting them. The modules are well insulated from each
other in the sense that the internal operation of one cannot effect that of another. This is not
the case in ordinary programming languages like PASCAL; the body of a procedure can contain
assignments to parameters and even to globals (variables external to the procedure and not in the
parameter list). As a result, the modules (procedures) in an apparently simple PASCAL program
(like the rms example) can pass information to each other in a very complicated manner.

The dataflow approach to programming has already been tested in practice. The “shell”
language of the popular UNIX operating system is based on the concepts of “pipeline” and “filter”
(the result of McIlroy’s influence). A UNIX pipeline is essentially a linear dataflow network (i.e.,
without loops and without branching). The form of dataflow provided in UNIX is therefore very
limited, but nevertheless it is still very powerful. The interface between filters is very ‘narrow’ (a
stream of characters) and so it is easy to combine them without the danger of interference and
side effects. Very often a problem can be solved entirely within the shell language itself, without
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the need to “descend” into a ‘high-level’ language like C. Yourdon and Constantine have produced
a formal dataflow methodology (which they call “transform analysis”) and applied it to a number
of significant applications. Their method involves two separate stages; in the first (which they call
“program analysis”) the analyst produces a (pipeline) dataflow net that performs the necessary
computations; then in the second stage (which they call “program design”) the net is translated
into the language at hand, usually COBOL.

Lucid represents an attempt to extend the success of the dataflow methodology by freeing it
from its dependence on imperative languages like C or COBOL (or the UNIX shell language itself,
which also allows commands). There are already a number of dataflow languages, but most of
them (in particular the “single-assignment” languages) are still heavily influenced by the von Neu-
mann view of computation. There are also a number of pure nonprocedural languages (basically
variations on LISP) but they are oriented towards the ‘recursive-function’ style of programming,
rather than towards dataflow. Lucid is intended to be a clean, nonprocedural language which is
nevertheless intended to be used in conjunction with a dataflow approach to programming. Our
goal is to simplify as much as possible the “system design” phase; as we have already seen, a Lucid
program is basically just a textual form of a dataflow graph.

We certainly admit that most programmers will find Lucid strange and even ‘unnatural’ in com-
parison with other ‘mainstream’ programming languages. The reader may even wonder whether
such an unconventional language has any future at all, given the human and material resources
invested in the ‘conventional’ approach. The reader might even question our wisdom in devoting
an entire book to such a strange language which until recently did not even have an implementa-
tion capable of running other than the simplest examples. There is hardly a community of eager
Lucid users anxiously waiting to find out more about the language.

Whatever the current state of affairs we do not, however, admit that Lucid or the definitional
approach is inherently strange or unsuitable for human/machine communication. In our opinion,
programmers find the approach to be strange only because they have very little experience in
using it. Is it really so ‘natural’ to think of a computation as a long, linearly ordered sequence
of one-at-a-time changes to the values associated with some collection of variables? Students
learning a language like FORTRAN often find it very difficult to grasp the fact that FORTRAN
statements are commands. Those with a mathematical background are often totally confused by
so called “statements” such as x = x + 1 which contradict everything they ever learned about
the symbol =.

The question that should be asked is not which approach is stranger compared to which,
but rather which approach is better. The decimal number system at first seemed very strange
by comparison with Roman numerals, but was eventually adopted because it made calculation
so much easier. The algebraic system of notation itself took many centuries before it gained
acceptance. In 1545 Cardano described his algorithm (“rule”) for solving the cubic x3 + px+ q as
follows [quoted in Smith (1929), p. 206]:

Cube the third part of the number of “things”, to which you add the square of half
the number of the equation, and take the root of the whole, that is, the square root,
which you will use, in the one case adding half the number which you just multiplied
by itself, in the other case subtracting the same half, and you will have a “binomial”
and “apotame” respectively; then subtract the cube root of the apotame from the cube
root of the binomial, and the remainder from this is the value of the “thing”.

Cardano undoubtedly considered his procedural (imperative!) formulation to be very ‘natural’
and ‘conventional’. A modern-day mathematician, however, can express Cardano’s solution far
more concisely as

u1/3 − v1/3 where u = d1/2 + q/2,

v = d1/2 − q/2,

d = (p/3)3 + (q/2)2,
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and the reader is spared the details of one particular sequence of calculations which yields the
value of the expression.

The imperative, procedural approach to algebra was abandoned hundreds of years ago (even
though algebra has always been closely connected with computation, for example, of roots of
equations as above). In modern computer programming, however, the imperative view has been
the dominant one since the invention (during World War II) of the modern electronic digital
computer. All of the most important programming languages are based on the imperative view.
There are, of course, a few languages (such as LISP) which use a more or less definitional approach,
but they have always remained ‘minority-interest’ languages with limited areas of application. The
vast majority of working programmers have practically no opportunity to use, and no experience
with, any form of definitional programming.

The imperative approach has certainly proved to be a success, if we take popularity as our mea-
sure of success. Almost all programs being written today are imperative. By the same measure,
of course, both the Roman numeral system and the procedural approach were just as successful
in mathematics. During the Renaissance, however, these systems were put to far greater use than
ever before. The rapid advance of science required that mathematicians apply the old procedu-
ral algebraic notation to far more complex problems. At the same time the great expansion of
trade and industry required that computations be performed by large numbers of ordinary people
untrained in the intricacies of the ‘conventional’ number systems. The old notational systems,
which had proved adequate for over a thousand years, began to reveal fundamental defects. Even-
tually, they were replaced by entirely new systems based on radically different principles such as
positional notation or referential transparency.

1.4 The Problems with the Imperative Approach

In recent years the imperative approach to programming languages has shown increasing signs of
strain. The conventional ‘mainstream’ programming languages are now being used for tasks which
are far more complicated than ever before, and by far more people than ever before. The first
von Neumann machines (those produced in the early 1950s) could perform only a few hundred
operations (such as additions) per second. A program was usually the work of a single programmer
and was considered big if it was more than a few dozen lines long.

Modern machines can now perform hundreds of thousands of operations per second. Some
current software systems involve millions of lines of code, the product of years of labor on the
part of hundreds of programmers and systems analysts. The basic principles of the von Neumann
languages and machines have remained unchanged since 1952—or,at least since the introduction
of ALGOL in 1960. It is hardly surprising, then, that by 1985 the descendants of FORTRAN and
the EDSAC are showing their age.

The most obvious sign that something is wrong with the von Neumann approach is the explo-
sive and exponential growth in the complexity of these machines and languages—especially the
languages. There are now literally hundreds of imperative languages in active use. Of course, it is
only to be expected that different applications might require different languages. These languages,
however, employ essentially different ideas even when the same domain of application is intended.
There is even a large number of supposedly “general-purpose” languages—ALGOL, PL/I, AL-
GOL 68, PASCAL, BASIC. These languages in particular are supposedly intended for roughly
the same applications, are supposedly based on the same concepts (variables and the assignment
statement), and claim to be “machine independent”. Nevertheless each somehow manages to be
unique in its own way and incompatible with its colleagues. There is no practical way of translating
programs from one of these languages to another.

The mushrooming complexity of the von Neumann approach is reflected in the state of the
individual languages themselves. The more ambitious of the general purpose languages (espe-
cially PL/I) have assumed colossal proportions. A language like PL/I offers thousands of features,
options and defaults all subject to thousands of restrictions and constraints. It is almost incon-
ceivable that any one person could know all or most of PL/I; its ‘manual’ is a set of volumes each
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the size of a telephone book.

A number of language designers have rejected the linguistic ‘overkill’ approach and produced
modest languages such as PASCAL. These languages have on the whole been more successful, but
in the end always prove to be deficient in some vital respect. The process of simplification always
seems to go one step too far. There are always some useful, perfectly natural, and apparently
harmless statements or programs that the user is strictly forbidden to write. In PASCAL, for
example, you can write a program to sort an array of 100 numbers, and you can write a program
to sort an array of 200 numbers, but you cannot write a single program that will sort an array of
arbitrary length.

Of course, it always seems that these restrictions can easily be lifted. A little loosening of the
type system, a simple extension of the concept of array, extra features for multiprogramming . . .
and very quickly the language is no longer simple. The general trend seems to be that a language
which is simple but too restrictive to be useful gets extended until it becomes a bloated monster
too cumbersome to be useful. ALGOL swelled up to become ALGOL 68, FORTRAN was inflated
to PL/I (and again FORTRAN 77), and now PASCAL has spawned ADA. The golden mean
between restrictiveness and generality seems impossible to obtain. The language designers may
have had their successes, but after a quarter of a century FORTRAN and COBOL are still by far
the most widely used languages.

A second, related problem with the von Neumann languages is their lack of precise specifica-
tions. The manuals usually give the syntax (what programs are allowed) unambiguously and in
great detail but give only an approximate and informal treatment of semantics (what the pro-
grams do). The supposedly exhaustive telephone book manuals describe what happens only in
the most common cases, and then only in very informal language. Any really complicated ques-
tion (especially one involving the interaction of different features) must be referred to the local
compiler—or to a local ‘guru’ who knows the compiler well. Programmers often write short ‘ex-
perimental’ programs to discover how the language works. The situation was well described by
Dijkstra (1976, p. 202):

Since then we have witnessed the proliferation of baroque, ill-defined and, therefore,
unstable software systems. Instead of working with a formal tool, which their task
requires, many programmers now live in a limbo of folklore, in a vague and slippery
world, in which they are never quite sure what the system will do with their programs.
Under such regretful circumstances the whole notion of a correct program—let alone a
program which has been proved to be correct—becomes void. What the proliferation
of such systems has done to the morale of the computing community is more than I can
describe.

The third symptom of the von Neumann disease is an inevitable consequence of the first two:
unreliability. The programs do not work! It is almost impossible to write an imperative program
longer than a dozen lines or so without introducing some kind of error. These “bugs” prove
to be extremely hard to locate, and programmers can easily end up spending far more time in
“debugging” a program than they spent in designing and coding it. Error-free software is, as a
result, enormously expensive to produce. In a large system it is practically impossible to remove
all the bugs. Some of the subtler errors can remain dormant for years (say, in a seldom used part of
the program) and then suddenly ‘come to life’ with catastrophic results. Of course human beings
will always make mistakes, no matter what language is used. But the features that have been
found by experience to be most error prone (goto statements, side effects, aliasing) are suggested
naturally by the imperative approach and are difficult to do without.

Finally, we should mention a fourth weakness of von Neumann systems, one which has only
recently become apparent but which may prove to be the most serious of all: they are inefficient.
Experienced programmers may find this statement hard to believe. They will admit that the
languages are complicated, poorly specified, and even error-prone; but inefficient? If nothing else
they let the programmer get close to the machine and so supposedly allow the programmer to
make the best use of the hardware. In fact this need to stay close to the machine is responsible
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for all the problems with von Neumann languages. Simplicity, reliability, user-friendliness and so
on all suffer in the name of efficiency. If von Neumann systems are not efficient, what are they?

The criticism of inefficiency, however, is directed more towards the machines than at the
languages. A von Neumann machine is capable of performing only one operation at a time;
if the logic of a given problem allows thousands of results to be calculated in parallel, the von
Neumann machine will perform the calculation at a rate thousands of times slower than that which
is possible in principle. The imperative languages may be well suited for getting the most out of
a von Neumann machine, but they necessarily reflect the sequential nature of these machines.

Christopher Strachey pointed out a simple but striking example of this kind of efficiency: matrix
multiplication. As he pointed out in the discussion, which appears after Landin (1966, p. 166),

One inconvenient thing about a purely imperative language is that you have to specify
far too much sequencing. If you wish to do a matrix multiplication, you have to do
n cubed multiplications [by the obvious method; the matrices being dimension n by n].
If you write an ordinary [i.e., imperative] program to do this, you have to specify the
exact sequence in which they are all to be done. Actually, it doesn’t matter in what
order you do the multiplications as long as you add them together in the right groups.

This drawback did not seem too important in the days when processors were expensive pieces
of hardware and represented a major portion of the cost of the machine. But now, large-scale
integration has made processors relatively cheap. There is no technical or economic reason why
we cannot build machines with thousands of processing units. The problem is, how to organise
the activity of these processors so that they can cooperate on the same task.

To be fair, our criticism of the von Neumann machine is really a criticism of a particular view of
systems architecture, that a computer system is centered around a single monstrous von Neumann
machine. In fact, von Neumann machines may prove to be useful components of systems for a
long time to come. One can, for example, connect a large number of modest-sized von Neumann
machines in a network in such a way that they can cooperate on the same program. This is
certainly one way of avoiding the von Neumann bottleneck. Of course, many researchers are
working on entirely new machine architectures (such as dataflow or reduction machines) which
process data in very different ways. At any rate, when we criticise “von Neumann languages”
what we are criticising are the conventional sequential/imperative languages based on a view of
computation as taking place on a single von Neumann machine.

Of course in principle there is no reason why an imperative language like FORTRAN could
not be implemented on some sort of parallel or distributed architecture. There would be no point
in doing so, however, if the implementation merely simulated the steps of a single, conventional
sequential machine. Most of the computing power of the ‘paral1el’ machine would lay idle. A
really worthwhile (say) dataflow implementation of FORTRAN would require a stage of sophis-
ticated program analysis to detect hidden parallelism. But then we would find ourselves in an
absurd situation in which the programmer and the implementation work at cross purposes. The
language forces the programmer to code up his algorithm in a rigorously sequential form; then
the implementation has to ‘crack’ this code and recover the original parallel algorithm! Naturally
many have tried to solve this last problem by adding features for ‘parallelism’ to the imperative
languages. The resulting creations, however, are even more complicated, and the interplay of the
new features with the other aspects of the language only aggravates the problems discussed earlier.

Reynolds (1970) once said that the challenge facing language designers is that of producing
a language which is simple, general and efficient (i.e., in which it is fairly easy to write efficient
programs) all at the same time. The designers of the conventional, imperative school have so far
failed to meet this challenge. PL/I, for example, is general and efficient but not simple. PASCAL
is simple and efficient but fails to be general enough in certain crucial aspects. APL is simple and
general but not efficient. Finally, ADA is not simple, and it remains to be seen whether it will be
either general or efficient.
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1.5 Some Suggested Solutions

Even the most enthusiastic supporter of imperative languages will admit that something is very
wrong. There are, however, a number of different attitudes regarding the “software crisis” and the
“parallelism problem”. Here are some of the more common points of view (slightly parodied).

First there is what we might call the Clint Eastwood outlook. According to this “rugged
Western” point of view, programming is a demanding and difficult activity, and always will be,
but still “a programmer’s gotta do what a programmer’s gotta do”. According to the ‘Cowboys’
the actual problem is a shortage of real programmers who are clever enough and tough enough
to get the job done. The Cowboys learned programming the hard way, through long hours ‘in
the saddle’ (i.e., at the terminal) and expect everyone else to do the same. If you make mistakes,
it is ‘yer own darned fault’. Cowboys generally distrust ‘book larnin’ (theory) and ‘new-fangled’
languages. They sneer at ‘greenhorns’ who complain that PL/I is too big or that C is too low level.
To them, PL/I does not have enough features and C is not dirty enough. What they want is even
more powerful tools which allow them to get even closer to the computer and make it ‘dance’.

The Cowboys certainly deserve our admiration. The best of them (the real Straight Shooters)
can produce impressive software that ordinary programmers are too ‘chicken’ even to try. Nev-
ertheless, we have to ask ourselves whether or not there are enough really tough Wranglers to go
around. There almost certainly are not, and we have to resign ourselves to the fact that most
software will be written by ordinary, humble Trail Hands—not by the Wyatt Earps of the terminal.

Next we have what we call the “Mr. Wizard” school of thought. The Wizards are in many
ways the opposite of the Cowboys, but they agree on one thing: programming and programming
languages are inherently very complex. The problem, as the Wizards see it, is that we lack a
good theoretical/mathematical understanding of these languages. The Wizards have searched
through many a dusty tome of ancient lore. They have learned the Arts Magical, the Logyck
Symbolyck and the Calculus of Lambda. They have conjured up the mighty names of Tarski,
Church and Curry.

The ultimate dream of the Wizards is a system for formal program verification. This would
allow programmers (assisted by Wizards) to produce airtight proofs that given programs are
correct—no matter how appallingly bad the language or program might be. Program verification
is therefore a kind of philosopher’s stone which will turn base programs into gold. As John
McCarthy (1965, p. 219) said,

The prize to be won if we can develop a reasonable mathematical theory of computation
is the elimination of debugging. Instead, a programmer will present a computer-checked
proof that the program has the desired properties.

The problem, of course, is that no amount of Wizards’ wand waving changes the basic nature
of the von Neumann languages. The Wizards did succeed in producing formal specifications—but
these specifications also took on telephone-book proportions, full of incomprehensible lambda-
calculus expressions. Similarly, proving the correctness of ‘real’ programs has also turned out
to be impractical. The Wizards ran into trouble with the ‘dirty’ features (side effects, goto

statements, aliasing) mentioned. Of course, these are exactly the features the Cowboys love the
most.

There is a third group, however, which views the antics of the Cowboys and Wizards with
self-righteous disdain. The members of this group are wild-eyed fanatics, the Preachers of the
gospel of structured programming.

The Preachers subscribe to a computer science version of the doctrine of Original Sin. They
believe that human beings are born with an inherent tendency to be careless and make mistakes
(the sin of Sloth), and to undertake tasks that are beyond the meagre powers of their mortal
minds (the sin of Pride). The wages of sin are, of course, bugs. If bugs (and software problems
in general) are to be avoided, programmers must abandon their evil ways and adopt the way
of the righteous. Programmers are exhorted to adopt some rigorous discipline (methodology) of
programming whose rituals will prevent the software from being possessed by evil spirits.
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The disciples of structured programming have indeed achieved important successes in the fight
against bad software. Nevertheless the evil that lurks within the hearts of men and women has
proved harder to vanquish than was expected. Abstention plays an important role in the Preachers’
teachings—abstention from features like goto statements and pointer variables, those forbidden
apples that tempt programmers into wickedness. Programmers, however, have great difficulty in
avoiding these forbidden fruits, as we have already noticed. The Preachers dream of a pure and
holy language from which all wicked features shall be banished. In practice, though, the designers
of these ‘structured-programming’ languages are always in the end forced to compromise their
principles in the name of efficiency. The faithful are therefore faced with a terrible but unavoidable
dilemma: they can choose to be virtuous and write programs that are correct but inefficient, or
they can choose to be wicked and produce programs that are efficient but bug ridden. “Why,” the
Preachers must ask themselves, “does the Devil have all the fast programs?”

There is, however, a fourth and more optimistic point of view which shares the Preacher’s low
opinion of unaided human capabilities but which offers a more down-to-earth solution. We are
referring to the “we have the technology” school of thought.

The Boffins agree that human weakness is the root cause of the software crisis, and that
therefore mere humans cannot produce software naked and unarmed. The armament the Boffins
offer, however, is physical and mechanical, not moral and spiritual. Their goal is to supply
the programmer with a complete selection of powerful programming tools: structured editors,
diagnostic compilers, clever type checkers, and sophisticated debugging systems. Their aim is to
produce a kind of Bionic Programmer, a technologically enhanced Superhero who can battle the
bugs on equal terms.

There is no denying, of course, that the ingenious devices found on the ‘programmer’s work-
bench’ can be extremely useful. The problem is that they can amplify programmers’ weaknesses
as well as their strengths. The gadgets in the Million Dollar Programmer’s utility belt can just
as easily allow their user to produce colossal bug-infested programs and then allow him to waste
stupendous quantities of resources in debugging. Could the superprograms produced by the new
generation of Superprogrammers breed a new race of terrifying superbugs? Will programmers
need even more powerful tools as a result? Will these tools generate even more terrifying bugs?
There could be no end to the process!

The ambitions of what we call the “DIY” or “Mr. Fixit” school are by contrast far more
modest. According to this point of view, the software crisis is the result of serious flaws in the
imperative languages. These flaws are not, however, the result of weaknesses inherent in the
whole von Neumann approach; but rather the product of design error. All that is needed is a little
tinkering, a few new parts here and there, the removal of a few troublesome features, and all will
be well.

Now it is certainly true that the imperative languages can be improved, and often fairly simple
changes can bring great benefits. The problem is that one change leads to another—and an
improvement in one area can have disastrous consequences in another. We have already seen that
tinkering with ALGOL and FORTRAN has not always been successful. This is especially true
when an attempt is made to bolt on features for ‘concurrency’ or even ‘dataflow’.

1.6 Honest, Folks, We Was Just Funnin’

It seems that in the last few pages we have mortally offended almost every computer scientist
working in programming languages. At this very moment a lynch mob of enraged Cowboys,
Wizards, Preachers, Boffins and Handymen is gathering outside. They have momentarily forgotten
their own (often bitter) disputes and are united in their determination to drag us down the street
to the old hangin’ tree.

The reader probably does not have very much sympathy for us. After all, have we not just
finished dismissing as futile almost every attempt to solve the software crisis? And have we not
added insult to injury by portraying honest researchers as half-crazy comic book characters?

In actual fact our satire is directed at only a small minority of the people who might seem to
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be the target. For example, most people who work on program verification or semantics are fairly
sensible. They think their work is important (which it is) but are under no illusions that (say)
new semantic descriptions of existing languages are going to solve the software crisis. They do not
really deserve to be called Wizards.

In the same way, most programmers/software engineers are well aware that programs will be
constructed by people who for the most part are mere mortals. They know that expert, close-to-
the-machine programming is not the universal remedy for software development problems—quite
the opposite. Even clever people know that too much cleverness can kill. These people are not
true Cowboys.

Similarly, most supposed “Boffins” know that a good environment is no remedy for a bad
language; and most alleged “Preachers” know that a good methodology cannot overcome a really
bad system.

Our criticism is directed instead against the small minority who are convinced that the partic-
ular problems they deal with lie at the root of the software crisis. The true Wizards, for example,
are convinced that the lack of formal tools is at the source of all the problems with imperative
languages. In the same way, the real Boffins are convinced that the real problem is the lack of a
proper programming environment.

They are all convinced that they have the solution, but they are all wrong. They are wrong
because they do not place the blame where it belongs, on the basic design of the machinery being
used. Instead, they think that the problem is with the way in which the machines are used. They
do not see the problem as being a technological one. The various approaches are very different
and even to some extent incompatible, but they have this in common: they are proposing soft
solutions (i.e., software, mathematics, methodologies) to a hard problem.

One group of researchers is conspicuously absent from our blacklist. We have had nothing bad
to say about people designing new kinds of machines. We could, of course, have lampooned them
as the Repairmen—fanatics who think they can solve the software crisis with a soldering iron.
After all, they can be just as convinced as any Cowboy or Preacher that their work is the key to
the future!

The difference, though, is that they are right. The problem at the root of the whole software
crisis really is the problem of machine architecture. We do not mean to say that each individual
new architecture proposed is bound to work. On the whole, however, the hardware researchers
are following the only path that will lead to a solution. Computer scientists in the ‘soft’ half of
the subject (semanticists, methodologists, language designers) have a choice to make.

On the one hand, they can devote their skills and energies to trying to make the old se-
quential/imperative approach last a little longer. Those that make this choice are the Cowboys,
Wizards, Preachers, Boffins and Handymen.

The other choice is to try to help the search for new machines and forms of computation.
This choice means devoting the skills and energies to discovering the new kinds of semantics,
methodologies, languages and so on that will be appropriate to the new generations of computers.
Those that take this path are choosing the future, and their efforts, we claim, will prove to be
neither futile nor ridiculous.

There is, of course, a third possibility: to try to ignore the issue and develop semantics,
methodologies, verification systems, etc., which are ‘independent’ of particular forms of compu-
tation. This can be done—much work in (say) verification of imperative languages can be easily
adapted to nonprocedural languages as well. Nevertheless, researchers cannot avoid the issues for-
ever. Those who imagine that they are taking no stand are often victims of unconscious prejudices
(such as the conviction that computation is inherently sequential). Researchers who try to avoid
the fundamental controversies in their subject risk seeing their lifetime’s work prove in the end to
be irrelevant.
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1.7 Nonprocedural Languages

It should be apparent by now that imperative programmers and language designers have a love-
hate relationship with the machine. On, the one hand, they want to get away from the machine, to
be abstract, high-level, structured, mathematical, problem-oriented. At the same time, they feel
an overwhelming urge to get close to it, to control the details of the computation and make the
program as efficient as possible. Of course, the features and fixes that allow the programmer to
get close to the machine are exactly those which cause all the trouble. These are the features that
the Greenhorns come to grief with, that the Wizards have trouble analyzing, that the Preachers
denounce as evil and that the Home Handymen are forever repairing.

The difficulties with imperative languages have led many to reconsider the ‘love’ aspect of
the relationship with the machine. They have been tempted to reject the most basic principle
of programming languages, namely, that they are somehow inherently dynamic because they are
intended to specify computation, a dynamic activity.

The two essentially dynamic features of a language like PASCAL are assignment and control
flow; so naturally many began wondering if they should not be eliminated. This radical solution
gained credibility after the crudest form of control flow, namely, the goto statement, was forced
to retire in disgrace.

It has been known for a long time that neither assignment nor control flow are truly necessary,
that it is possible to write programs in a purely static, mathematical language. Some fifty years
ago, Church showed that any computable numeric function could be expressed in the Lambda
Calculus (a very simple formalism for defining functions). Later Kleene showed that the same
was true of a simple language whose only ‘construct’ was recursive function definition. One of the
first high-level languages invented was LISP, the ‘pure core’ of which has neither assignment nor
control flow; indeed LISP was based in part on the work of Church and Kleene.

There is general agreement that the nonprocedural languages (i.e., languages without assign-
ment or control flow) are in many respects far superior to the imperative languages. Nonprocedural
languages are referentially transparent ; the value of an expression appearing in a program depends
only on the values of the subexpressions, and not on (say) the order in which these subexpressions
are evaluated. In particular, functions (or “function procedures”) really represent functions in
the ordinary sense of the word. The value returned by a function is determined by the value of
the arguments and is independent of the ‘time’ at which the function is ‘called’. In other words,
mathematical symbols (like +) are used exactly as they are in conventional mathematics. The
notation used by nonprocedural programmers is that of conventional mathematics, modified for
use by programmers.

The Wizards are, of course, delighted with nonprocedural languages, because they can use the
techniques of conventional mathematics to reason about programs. There is no need to develop
whole new formalisms to make mathematical sense of nonmathematical notation. For example,
the law of substitution of equals for equals holds: if the function f(x, y) is defined by the user by
the expression x−2∗y, then any expression of the form f(A,B) can be replaced by A−2∗B. The
semantics of nonprocedural languages (at least of those considered in this book) are extremely
easy to specify. The meaning of an expression is the result of applying the indicated function or
operation to the meanings of the subexpressions, and the meaning of a recursive definition is its
least fixed point (most general solution).

The Preachers, too, are ecstatic. There are no goto statements in a language like ISWIM, and
not even any for loops. Nor are there any side effects; for example, the expression f(x) − f(x)
(involving integers) always has the value 0 (provided the computations terminate). Referential
transparency obviously makes the top-down approach much easier, and function definitions and
where clauses are excellent structuring tools.

Nevertheless, nonprocedural languages have always been considered (especially by Cowboys)
to be fatally flawed; they are (supposedly) inherently inefficient. The root cause of this (alleged)
inefficiency is their lack of iteration. Since nonprocedural languages are purely definitional, the
values of variables cannot change, at least within the range of the program where a given definition
is in force. As Dijkstra (1965, p. 215) said,
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Despite its elegance a serious objection can be made to such a programming language
[without assignment or control flow]. Here the information in the stack can be viewed
as objects with nested lifetimes and with a constant value during their entire lifetime.
Nowhere . . . is the value of an already existing named object replaced by another value.
As a result the only way to store a newly formed result is by putting it on the top of
the stack; we have no way of expressing that an earlier value now becomes obsolete,
and the latter’s lifetime will be prolonged, although void of interest. Summing up: it
is elegant but inadequate.

Dijkstra’s judgement was certainly confirmed by the experience with the older, more conven-
tional nonprocedural languages (primarily LISP). For many applications LISP is extremely well
suited, but for others, especially the more prosaic, the LISP solution is unacceptably slow. In
fact the developers of LISP quickly added a number of ‘impure’ features (including prog for real
iteration) which improve the performance but destroy referential transparency.

Recently, however, researchers have discovered a possible solution to the problem of inefficiency.
The weakness underlined by Dijkstra is not in inherent weakness; it is a weakness of a particular
method of implementing a particular kind of nonprocedural language. There are two assumptions
implicit in Dijkstra’s criticism. The first assumption is that the program is run on a von Neumann
machine, using the conventional ALGOL runtime stack approach. The second assumption is that
the basic data objects (the arguments of functions) are finite—collections of ‘machine words’ which
will be piled up on the stack. Now new nonprocedural languages have appeared which allow the
arguments of functions to be infinite objects (for example, the list of all prime numbers). These
new languages are still respectable and mathematical—mathematicians have been reasoning about
inlinite objects for hundreds of years. Nevertheless they allow new styles of programming and new
methods of implementation (by reduction machines, lazy evaluation, dataflow) which avoid the
difficulties mentioned by Dijkstra, which make use of iteration as well as recursion and which allow
many processors to cooperate in the evaluation of a single program. Nonprocedural languages may
one day compete with FORTRAN in efficiency as well as elegance.

It may well be possible, then, to program efficiently without iteration—using only recursive
definitions instead. This encouraging development has, however, led some to completely renounce
iteration altogether. They accept uncritically the dogma that nonprocedural languages cannot
have iteration; in fact they extend it to an even more general principle, that nonprocedural pro-
gramming is inherently independent of any operational or dynamic considerations. They consider
this lack of ‘dynamism’ to be a positive virtue. They feel that the dynamic/operational ideas
are the source of all problems in programming languages. This mystical, visionary approach to
programming represents what we might call the “fool on the hill” point of view: the programmer
must not burden his language and his mind with pedestrian details of mere computation; instead
he should be up on the hill (“sitting perfectly still”) away from the hustle and bustle of mere
computation, contemplating static, eternal mathematical objects. Of course programs have to be
implemented, even implemented efficiently, but that (according to the “Mystics”) is entirely the
concern of the engineers—of mere tradesmen, so to speak. Programmers, according to this view,
need not know anything about how the program is to be run—they should understand it from the
mathematical point of view alone.

The Mystics are especially strongly represented in the current “functional programming” com-
munity. One particularly extreme sect believes that functions are clean and high level and worthy
of the programmer’s attention, but that their arguments (humble data objects) are dirty and low
level and to be avoided. Mere data objects are, to the adherents of this sect, so unspeakably
common that they consider it to be demeaning even to talk of them. Their languages there-
fore have no names for these objects; variables and expressions can denote only functions. Some
dataflow languages are in this category as well. In these languages dataflow is purely an imple-
mentation technique, an operational concept which would only offend the refined sensibilities of
the nonprocedural programmer.

Adherents to this philosophy often justify themselves on the supposedly obvious grounds that
real (‘pure’) mathematics deals essentially and inherently with static objects, and that change
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and dynamic activity are alien to the mathematical spirit. As Christopher Strachey (1971, p. 77)
once said,

. . . the use of imperatives (or commands) in programming introduces variables, and
mathematics in general does not recognise the existence of variables in this sense, that
is, values varying over a period of time. In its traditional branches mathematics deals
only with static situations. Even the calculus, which is concerned with the approaches
of objects to a limit, deals with the subject in terms of a series of fixed values . . . .
In programming, on the other hand, we deal with time-varying variables by the very
nature of the process; a program is essentially a schedule of changes.

(Strachey was not, incidentally, defending the mystical point of view. Rather, he was exhorting
the Wizards to develop the new, dynamic mathematics necessary for the understanding of the
assignment statement.)

But is it really true that mathematics is inherently static? Is it really true that mathematicians
have never dealt with values which change with time? Nothing could be further from the truth!
When calculus was first developed it was on a very operational basis. Newton introduced his
fluxions, quantities which change with time. Later, of course, the calculus was formalized using
the notion of limit (or, more recently, the notion of infinitesimal). Nevertheless the calculus is
still in essence the study of changing quantities—in fact, of smoothly changing quantities. The
basic principle of mathematics has always been to study the dynamic by means of the static, by
continually generalizing the notion of quantity. Long ago the dynamic concept of ‘taking away’,
for example, was formalized by means of the negative numbers, and in the same way ‘dividing
into parts’ was formalized using the rationals. Mathematics has always been to a large extent the
study of various forms of change.

Physicists and engineers would have great difficulty accepting Strachey’s definition of the cal-
culus as concerned with “the approaches of objects to a limit”. People who actually use differential
equations normally use very operational concepts—speed, acceleration, density and so on—in their
work. It would never occur to them that dynamic thinking might be ‘low level’ or confusing. Nor
do they see any real contradiction between the dynamic and the static point of view. Instead, they
see the two approaches as being opposite but complementary, and in harmony. If the mathematics
is modeling (or specifying) a dynamic situation, why not think dynamically? To do otherwise
would certainly be foolish!

The Mystics acknowledge the basic problem (unsuitability of the von Neumann architecture)
but want to solve the problem by ignoring it. The Mystics just do not want to know how their
programs are run—or at least think that programmers should not know. Because the semantics of
their languages can be given without reference to operational ideas, they think they can wash their
hands of the whole problem. They say to the engineers, ‘Here’s the semantics of the language,
go and implement it, you can use any method you want, you’re not stuck with von Neumann
architecture’. The Mystics think that language design can be completely machine independent!

1.8 Lucid, the Well-Balanced Language

In Lucid we are trying to restore to programming the same harmony between the static and the
dynamic which is found in other branches of applied mathematics.

Lucid is in fact a nonprocedural language but it is in no way based on a purely static view
of computation. Lucid statements are just equations, but the resemblance between some of these
statements and assignment statements is not just superficial and syntactic. The variables in a
clause really can be thought of as having values which change with time. The functions defined by
a user do in fact denote correspondences between infinite sequences of datums; yet they really can
be thought of as filters. The resemblance between a Lucid expression like sqroot(avg(square(a)))
and the corresponding UNIX pipe

square < a | avg | sqroot
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is deeper than the syntax would indicate. Lucid’s temporal operators allow programmers to realize
iteration and dataflow computation (filtering or ‘plumbing’) directly and in a natural way.

The Lucid programmer specifies exactly the output (meaning) of the program but only suggests
or indicates the computations to be performed. The programmer has the benefits of operational
thinking but not the drawback: namely, worries about details such as which particular order to
perform operations in, rates of flow of data, capacities of buffers, protocols and so on. The ‘implicit’
approach gives the implementation more freedom as well. Lucid allows the programmer to avoid
specifying unnecessary sequencing; this gives much greater scope for carrying computations out
in parallel.

Lucid in particular has one great advantage over other ‘dataflow languages’: the programmer
is not totally restricted to dataflow (and even less to a single dataflow paradigm) and can think in
terms of other operational concepts as well. In particular, the programmer can understand some
statements as specifying an iterative algorithm. By this we mean that the programmer can think
of some variables as denoting stored (remembered) values which are repeatedly modified in the
course of the computation. For example, the equations

i = 1 fby i + 1;

f = 1 fby f ∗ i;

can certainly be understood as specifying a dataflow network; but in this particular case the
dataflow view is somewhat unnatural. Equations like the above are much more easily interpreted
in terms of an iterative activity that initalises both i and f to 1, then repeatedly updates these
values. On each step of the iteration the new value of i is the old value of i plus one, and the new
value of f is the old value of f times the old value of i.

The objection could be made, of course, that iteration is not dataflow, and so has no place in
a dataflow language. We would agree with the premise, but not the conclusion. Why should not
a dataflow programmer have access to other ‘modes’ of computation? Why should everything be
reduced to ‘pure’ dataflow? It is our belief that dataflow works best when supplemented with other
forms of computing, such as iteration. This is true on the physical as well as on the conceptual
level. We see nothing inherently wrong with a dataflow network which has filters with memory
which process their input according to some iterative algorithm (the sqroot filter in the example
program is a case in point). On the other hand, it may in fact be simpler for a machine to do
everything through ‘pure’ dataflow. The important point is that Lucid does not force either the
programmer or the implementation to make a choice between dataflow and (say) iteration. In
fact, it is quite possible that the programmer’s view of the computation (what we might call
the ‘virtual implementation’) can be very different from the actual implementation. The actual
implementation might not use any data flow at all. (In fact there exist many useful Lucid programs
that cannot be implemented using only iteration and pipeline dataflow.)

Nevertheless, Lucid is still a “dataflow language” because (i) Lucid programs (at least the vast
majority) can be written, read and understood using the pipeline dataflow model of computation
and (ii) pipeline or other forms of dataflow can be used very effectively to implement these pro-
grams. The Lucid approach differs from that of some other dataflow languages (i) in that Lucid is
a rigorously nonprocedural (in fact functional) language with a static, denotational semantics; but
at the same time (ii) programmers are encouraged to think operationally, in terms of dataflow;
yet (iii) the programmer does not need to understand the actual implementation, at least in any
detail; and (iv) other forms of operational activity (i.e., modes of computation other than pipeline
dataflow) are available to programmer and implementer alike.

The Lucid approach offers the possibility of finally achieving both efficiency and efficacy (sim-
plicity and generality). The programmer has some control (“influence” would be a better word)
over the way in which the computations are to be performed. The programs need not be ineffi-
cient. At the same time, since the operational side is only indicated, not specified, the programmer
is spared the chore of planning the entire computation in all its grotesque detail. Programmers
therefore have no need of extra ‘dirty’ features, of all those levers, handles and switches which
the imperative programmers need to control their machine. The language can therefore remain
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relatively simple.
Many people, of course, are skeptical of our approach—they feel that it is too good to be true.

We have seen that the root cause of all the trouble with imperative languages is the contradictory
attitude to the machine; a desire to get away from it and to get close to it at the same time.
Many think that this is a general phenomenon which occurs with all languages and systems—the
eternal dilemma facing the programmer and language designer. Some of them (mainly Cowboys)
think Lucid will fail because it is too simple and mathematical, because it is not close enough
to the machine, does not allow pointer variables, error exits or run-time rewiring of the dataflow
net. Others (some of the Mystics) also think Lucid is doomed, but for the opposite reason. They
think Lucid is dirty because it is based on dataflow, that it is too close to the machine (whether
or not the machine in question is a von Neumann machine). They feel that we have betrayed the
principles and ‘gone Cowboy’ by emphasizing operational ideas. It has even been said that Lucid
is not “functional”—in spite of the fact that Lucid statements are genuine equations, and in spite
of the fact that Lucid function variables denote genuine functions.

Needless to say, we do not share these opinions. It is certainly true that imperative languages
find it impossible to be high level and efficient at the same time. We do not agree, however, that
this dilemma is just another example of the supposedly eternal, tragic but unavoidable disparity
between nice clean idealistic theory and hard, dreary dirty practice. We feel there is a simpler
explanation.

In many writings on programming it is made to seem that the job of a programmer is to make
some given machine do something; the language is the way which the human communicates to
the machine the activities which are to be performed. This picture is very misleading. Machines
are not just given; nor do they exist to please the programmers. Languages are not the tools
by which programmers communicate arbitrary desires to computers. Machines exist to solve
problems; to simulate an airplane in flight, to control a refinery, to compute the gas bill. The role
of programmers in this context is to communicate the problem to the machine—the programming
language is their tool. The reason that the programmer wants to get away from the machine is
to get closer to the problem. The difficulty with von Neumann machines is that they are too far
from the problems. They are just not suitable for the work which they have to perform.

Many applications quite naturally suggest computations with a large degree of parallelism
(most kinds of numerical analysis) and/or data flowing through a network (most forms of ac-
counting). The von Neumann machine (or rather, a system consisting of one such machine) is
suited for neither form of computation, and it is the poor programmer with his overburdened
language who has to fill the gap. It is not enough for the programmer to merely indicate how the
computation is to be performed, and then leave the details for some optimizing implementation.
The distance is too great between the kind of computation required and the kind of computation
being offered. The programmers must take charge of the details of the computation themselves
and apply their human intelligence to this task. The language designers must therefore provide
both problems-oriented and machine-oriented features. Since the problems and the machines are
so ill-matched, it is not surprising that the resulting languages are unhappy compromises. The im-
perative language designers are trying to do the impossible—to solve a hardware problem through
software. The software crisis is really a hardware crisis!

New languages cannot resolve the crisis unless they are accompanied by new machines as
well. If we had a genuine dataflow machine available, the gap between the machine and many
applications would be drastically narrowed. For those applications a language based on dataflow
can therefore be close to the problem without being so far from the machine that the latter is used
inefficiently. The programmer could be relieved of the burden of specifying the computation and
only have to indicate it instead. That makes it possible for the language to be nonprocedural and
not have extra, dirty features.

Our view, therefore, is that new languages and new machinery must be developed together.
This is the view taken by the famous Japanese “fifth generation” project. In the words of Shunichi
Uchida (1982, p. 1),

The computer systems of today, however, are still based on the von Neumann model
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of computation, although all kinds of improvements have been made since the first
generation. Essentially, all that has happened is that software systems have been ex-
tended to cope with new and sophisticated applications. The software systems used in
current computers have become too large and complicated to maintain good produc-
tivity, reliability, and maintainability. And hardware systems based on conventional
architectures are also approaching their limits in terms of improvements in computing
power and memory space to support these complicated software systems.

The Japanese project is based in large part on the language PROLOG and the idea of computation
as logical deduction. Programmers using PROLOG do not have to supply an exact recipe for
producing the data desired. Instead, they present a collection of logical assertions about the
required data. The PROLOG implementation automatically searches for the data which satisfies
the requirements. The searching really amounts to investigating the logical consequences of the
assertions given by the programmer. For example, a PROLOG programmer might type

path(Coventry ,Reading , X)

(here X is a variable) and the PROLOG implementation might eventually answer

X = [Coventry ,Birmingham,Oxford ,Reading ].

From this answer the programmer can conclude that

path
(
Coventry ,Reading , [Coventry ,Birmingham,Oxford ,Reading ]

)
is a logical consequence of the other statements in the program. These statements (not shown here)
might axiomatize the notion of a path from one town to another in (say) the railway network. The
programmer is not required to give an explicit path-finding algorithm. Instead, the implementation
finds a path by searching for something that the program implies is a path. With PROLOG,
computation is a form of controlled deduction.

PROLOG is a good example of a well-balanced language. A PROLOG program (at least a
program in ‘pure’ PROLOG) can be understood statically, as a collection of assertions in first-order
logic. At the same time programmers can understand the statements as rewrite rules to be used by
(say) a depth-first searching algorithm. The two views are basically complementary. A PROLOG
programmer needs to understand something of the search strategy in order to make the programs
reasonably efficient, but he does not have to know all the details of every aspect of the behavior. If
he is concerned only with the correctness of his program, then the static statements-as-assertions
semantics is enough.

The Japanese research group has undoubtedly made a wise decision in studying PROLOG.
PROLOG is well suited to some of the Artificial Intelligence applications the Japanese group has
in mind. However, we strongly doubt that PROLOG is destined to be the only fifth-generation
programming language. Certainly, the importance of intelligent knowledge-based systems (IKBS)
and AI applications will increase in the years to come. Certainly, PROLOG and similar languages
will be used more and more. Nevertheless, there will always be a great deal of more straightforward,
‘bread-and-butter’ computation to be performed (such as accounting and numerical analysis).
PROLOG is not at all well suited for this kind of problem. For example, PROLOG programmers
are not allowed to define their own functions, and even the arithmetic operations are not really
respectable. The AI and IKBS applications themselves will involve a lot of well-determined, cut-
and-dried computation, in addition to PROLOG-style searching and backtracking. It remains
to be seen how much PROLOG can do on its own, without the assistance of other languages
and forms of computation. The Japanese group is certainly aware of the limitations of inference
computation and is investigating dataflow architectures and languages (Lucid included) as well.
It may be that in the future ‘inference’ programming languages (such as PROLOG) and dataflow
languages (such as Lucid) will be used in cooperation. PROLOG could be used to interface with
the end user (it is very simple) and to program the more ‘exotic’ applications. Lucid, on the
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other hand, would be used to program a dataflow machine to carry out the more conventional,
behind-the-scenes computations.

Of course, PROLOG and Lucid can both be implemented on von Neumann machines. (PRO-
LOG is easier to implement this way than Lucid.) With a little work a tolerably efficient optimizing
compiler could be produced which would accept a reasonable subset of Lucid. For many applica-
tions the degree of efficiency would be adequate or at least the inefficiency would be compensated
for by the advantages of using a clean nonprocedural language. For other applications, however,
such as systems programming, it is fair to say that no nonprocedural language could ever compete
with C—they are simply not close enough to the (von Neumann) machine. By the same token, no
imperative language (even run on a dataflow machine) should be able to compete with a dataflow
language run on a dataflow machine.

The fools on the hill have only gone half the way; they have rejected one, unsuitable, form
of computation without wholeheartedly adopting any other. They have left what they see as the
filth and corruption of the decadent von Neumann approach in the valley below but have yet to
cross the mountains. They have yet to commit themselves to the prophets of a new millenium of
computing. They remain waiting on the mountain, not yet ready to descend into the land of milk
and honey on the other side.

1.9 Lucid—The Dataflow Programming Language?

The title of this book was deliberately made ambiguous. The phrase “Lucid, the dataflow pro-
gramming language” could mean “Lucid, which is a dataflow programming language (like many
others)”. But it could also mean “Lucid, the one and only dataflow programming language”.
We have left the title in its ambiguous form because we feel that, in a sense, both readings are
appropriate.

The reader should by now understand the grounds on which Lucid itself can be considered
a dataflow (programming) language. What is not clear are the grounds on which it could be
considered the dataflow language.

There are in fact quite a number of dataflow languages already in existence. If by the term
“dataflow language” we mean a language in which a programmer can write programs which specify
dataflow computations, it is possible to classify these languages as follows.

(i) Conventional Imperative Languages, such as FORTRAN. It is in fact possible to com-
pile imperative programs to ‘run’ on a dataflow machine. The most simple-minded compilation
algorithms take no advantage of the parallelism offered by the dataflow architecture. More sophis-
ticated techniques involve analyzing the program to detect hidden parallelism (hidden, that is, by
the sequential nature of the language) but it remains to be seen how successful this technique can
be. It is certainly worth trying, considering the huge amount of effort that has been invested in
writing imperative programs. But the long-term prospect must be that FORTRAN and company
will be gradually phased out, to be replaced by proper dataflow languages.

(ii) Enhanced Imperative Languages, such as ADA. It is possible to add features to con-
ventional imperative languages which allow the programmer to set two or more computations
operating at the same time. These new features are based on various operational ideas, for exam-
ple, on communicating processes (CSP), on coroutines (Kahn–McQueen) or on the idea of filters
and pipelines (UNIX). Certainly, these languages could take advantage of a dataflow architecture.
Many of them are very close in spirit to Lucid, in that the programmer is intended and encouraged
to think operationally in terms of dataflow. Unfortunately, the enhanced languages tend to be
even more complicated than ordinary imperative languages, which are already bad enough. Also,
the new features are sometimes based on the concept of a common central store, something which
is completely alien to the dataflow approach to computing. Even those based more directly on
dataflow can still be strange, complex and hard to use. We cannot believe that these ‘enriched’
languages represent the wave of the future. Instead of adding features for forcing parallelism, we
should be removing features (like the assignment statement) which force (or at least encourage)
the programmer to specify unnecessary sequentiality.
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(iii) Restricted Imperative Languages, for example, Single-Assignment Languages such as ID.
It has been known for a long time that certain restrictions on the use of the assignment statement
can make it much easier for an implementation to find and exploit parallelism in a program.
Even with the restrictions it is not too hard to write programs—single-assignment programming
is like very rigorous structured programming. The single-assignment languages were the first
really successful dataflow languages, if by successful we mean that (a) it is possible to write
significant programs correctly without due effort and (b) the programs can take good advantage
of a dataflow architecture without a great deal of sophisticated preprocessing and program analysis.
Nevertheless, it is hard to believe that the single-assignment languages are the wave of the future.
The assignment statement is a hangover from the von Neumann approach to computation. Why
restrict it? Why not eliminate it completely?

(iv) General Purpose Functional Programming Languages, such as SASL, FGL or Lispkit.
These languages, from which assignment has been banned, are modernized and sanitized versions
of LISP. The list is normally the main kind of data structure. These languages can also be
successfully used as dataflow languages, especially if infinite lists are allowed. If these infinite lists
are used to represent histories (as they often tend to be), then programming in these languages
can be very much like programming in Lucid. The problem with these languages is that (as we
see it) they are still too general. Lists do not have to be used as histories, they can form much
more complicated structures. The elements of lists can be arbitrary objects, and functions can
be applied to (and yield) arbitrary objects. It is our belief that the programmer pays a heavy
price for this generality. A general LISP-like language is much harder to implement, and certain
techniques (such as tagged-demand interpretation) are not applicable. The generality affects the
programmer as well as the implementer. A Lucid programmer can think of x and y as values
varying with time, and write their (varying) sum as x + y. A LISP-ish programmer, however, is
forcibly reminded that x and y really denote infinite objects and must write something like

componentsum(x, y)
where

componentsum(x, y) =
cons

(
car(x) + car(y), componentsum

(
cdr(x), cdr(y)

))
end

Of course, we could (a) impose restrictions on the kinds of programs written; and (b) preprocess
the program or extend the meanings of symbols like + to include componentwise summation of
lists. This would take us to the final category in our list.

(v) Special Purpose Dataflow Functional Languages, namely, Lucid. Lucid can therefore be
seen as an attempt to anticipate the evolution of dataflow languages from the conventional lan-
guages, through the single-assignment and LISP-like functional languages. We feel it has some
claim to be the dataflow language because in terms of this evolution it is the most advanced. We
certainly do not claim that it is the only dataflow language. Nor would we wish to characterize
other dataflow languages as necessarily being “failures”. We do feel, however, that Lucid is the one
dataflow language that has most thoroughly rejected the old von Neumann form of computation,
and embraced dataflow in its place. Lucid is the dataflow language of the future.
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Chapter 2

ISWIM and Algebras

Lucid is a definitional language; the statements in a Lucid program are equations defining streams
and filters, not commands for updating storage locations. Lucid is unusual in this sense, but not
unique. The first definitional language, namely McCarthy’s LISP, was designed more than some
twenty-five years ago, in 1960.

A LISP program (or at least a program in LISP’s ‘pure’ subset) is simply a set of definitions
of side-effect-free functions, together with an expression (using some of these functions) whose
value is required. The pure ‘core’ language contains no imperative features, and the semantics is
therefore referentially transparent (in that the value of an expression depends only on the value
of its subexpressions). Unfortunately, programs written in the pure subset were sometimes very
cumbersome to write and unacceptably inefficient to run. Later versions of the language had extra
imperative features (such as the prog construct and the operations replaca and replacd) added
to improve efficiency. Side effects became possible, and were immediately ruthlessly exploited.
Referential transparency was therefore lost, and with it much of the mathematical elegance of the
language. The considerable savings in time and space made possible by these ‘dirty’ features helped
give rise to the belief that purely applicative, functional languages are intrinsically inefficient and
that imperative features are essential to any language, and are even inherently natural.

After this brief glimmer of hope (for a purely functional language) was extinguished, several
years elapsed before another definitional language appeared. This next language, Landin’s ISWIM,
was introduced in his famous ‘The Next 700 Programming Languages’ (Landin, 1966). Landin’s
aim was to show that purely functional languages need not be notationally cumbersome. The
problem with LISP was that expressions often became very large, deeply nested and therefore
(especially given LISP’s use of parentheses) extremely difficult to read. Landin solved this problem
by inventing the “where clause”. A where clause is an expression together with a set of ‘auxiliary’
definitions of variables used in the expression. For example, the ordinary expression((

−b + sqrt(b ∗ b− 4 ∗ a ∗ c)
)
/(2 ∗ a)

)
∗((

−b− sqrt(b ∗ b− 4 ∗ a ∗ c)
)
/(2 ∗ a)

)
can be rewritten using a where clause as

r1 ∗ r2
where

r1 =
(
−b + sqrt(d)

)
/(2 ∗ a);

r2 =
(
−b− sqrt(d)

)
/(2 ∗ a);

d = b ∗ b− 4 ∗ a ∗ c;
end

Note that d occurs in the expressions defining r1 and r2, with its value being given by the third
definition in the where clause. (Actually, Landin would have used the word whererec, for reasons

25
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which will be explained later. In fact, all the following ‘ISWIM’ clauses would, following Landin’s
conventions, be written with whererec.) Landin proposed a number of syntactic variations on the
above notation; we could also write

let d = b ∗ b− 4 ∗ a ∗ c in
let r1 =

(
−b + sqrt(d)

)
/(2 ∗ a)

and r2 =
(
−b− sqrt(d)

)
/(2 ∗ a) in

r1 ∗ r2
end

end

An ISWIM program is simply an expression, and its output is its value (considered as an
expression). (Input will be discussed later.) The official syntax of ISWIM is an abstract one—
what is specified is the collection of parse trees and not a collection of strings. The designer of a
particular member of the family is allowed some freedom in the concrete (string) syntax. In this
book we will use fairly conventional concrete syntax, with familiar operations (such as addition)
denoted by familiar symbols (such as +) used as infix operators, and with function application
indicated by the usual parentheses and commas notation. Obviously, in designing ISWIM, Landin
merely adapted and made precise some common notational conventions of ordinary mathematics.

ISWIM allows functions to be defined by equations, in the obvious way, as in the following
clause:

dist(P,Q)
where

dist(A,B) =

sqroot
(

sumsq
(
xcoord(A)− xcoord(B), ycoord(A)− ycoord(B)

))
;

sumsq(x, y) = x ∗ x + y ∗ y;
end

A defining expression in a where clause can (as above) use other functions or variables defined
in the clause. The expression defining a function can even use the same function, so that recursive
definitions like that of fac in

fac(6)
where

fac(n) = if n < 2 then 1 else n ∗ fac(n− 1) fi;
end

are possible. Mutually recursive definitions, like those of pow , evenpow and oddpow in

pow(B,E)
where

evenpow(x, n) = pow(x ∗ x, n/2);
oddpow(x,m) = x ∗ evenpow(x,m− 1);
pow(x, n) = if n eq 0 then 1

elsif odd(n) then oddpow(x, n)
else evenpow(x, n)
fi;

end

are also permitted. There is no requirement that a variable or function be defined before it is
used. In general, the order of the definitions in a clause is irrelevant; permuting the sequence of
definitions has no effect on the meaning of the clause.
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The right-hand sides of definitions in a where clause can, as in

Z ∗A
where

A = 5;
B = 5;
C = Z ∗ Z
where

A = 3;
Z = A + B;

end

end

themselves involve where clauses. In general, the definition which applies to a given occurrence
is the one in the innermost enclosing clause. For example, in the definition of Z in the above
expression, the relevant value of A is 3 while that of B is 5. The ISWIM programmer can write
nested, hierarchically structured programs much as in PASCAL. The scope conventions are, as we
shall soon see, exactly those of PASCAL or ALGOL.

Here is an ISWIM program which prints the 100th prime.

primeno(100)
where

primeno(I) = if I eq 1
then 2
else nextprime(primeno(I − 1)) fi;

nextprime(Q) = if isprime(Q + 1)
then Q + 1
else nextprime(Q + 1) fi;

isprime(P ) = nodivsgt(2)
where

nodivsgt(k) = k ∗ k > P or
(
P mod k ne 0 and nodivsgt(k + 1)

)
;

end

end

This program is written in what we might call “integer ISWIM”: the individual variables
denote integers, and the function variables denote functions over the integers. The arithmetic,
relational and logical symbols as + , > and and have the usual meanings, with 0 and 1 playing
the role of the truth values false and true, respectively.

The language described by Landin (1966) is more elaborate and powerful than we have indi-
cated so far. For one thing, he actually had two kinds of where clause, a recursive one, indicated
by the word whererec, and a nonrecursive one, indicated by the word where. In the nonrecursive
clause, the auxiliary definitions are valid only in the expression at the head of the clause (we call
this expression the subject of the clause). Landin’s ISWIM was also higher order: functions could
have other functions as their arguments. Finally, Landin added a ‘dirty’ imperative feature, the
“program point”, apparently to make the language more efficient and to make it easier to translate
imperative languages into ISWIM.

Our language Lucid is based directly on Landin’s, but not exactly on the language as presented
in 1966. For one thing, our where clauses are all really whererec clauses; since the recursive option
is the default (in fact, the only) one, there is no need to indicate it explicitly. We therefore use
only the word where, even though in the original ISWIM this indicated a nonrecursive clause.

Furthermore, Lucid is a first-order language; functions cannot be used as the arguments of
other functions (the reasons for this restriction, and the possibilities for its removal, are discussed
in a later chapter). The version of ISWIM on which Lucid is based is therefore also first order.
Finally, Lucid is a strictly nonprocedural language with no ‘dirty’ features; the version of ISWIM
on which it is based must therefore not have program points.
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To make this distinction clear we will use the name “ISWIM 66” for historical ISWIM, as
introduced in 1966, with its nonrecursive clauses, higher-order functions and program points. We
will use “ISWIM” to refer to a cleaned-up, modern version (which we describe only informally) in
which imperative features are removed and all where clauses are recursive.

Finally, we will use the (more modest looking) name “Iswim” for the first-order subset of
ISWIM on which Lucid is based. We will not use ISWIM 66 at all in this book.

2.1 Algebras

One of the most commonly asked questions about a programming language is, ‘What data types
does it have?’ In other words, what kinds of data objects do programs in the language manipulate?
Typical answers to this question would refer to integers, reals, Booleans, strings, records, lists,
complex numbers, arrays, tables and so on. However, the answer to the question ‘What data types
does Iswim have?’ is “any”.

Although this answer is correct, it does not mean that Iswim is a single, unimaginably huge
language in which all conceivable data types are already available. Rather, what we mean is that
Iswim is a family of languages, each member of which is determined by a choice of underlying data
structures. The different members of this family look very similar; they are identical in what we
might call, after Wilkes, their “outer syntax”. This uniformity is possible because the basic feature
of Iswim—the where clause—is independent of any considerations of data types and operations.
Iswim separates what Landin (1966) calls “a way of expressing things in terms of other things”
and “a basic set of given things”. Each member of the family is (in Landin’s words) “a point in a
well-mapped space”.

The coordinates of any point in the Iswim space is just the collection of given or primitive
things. This set of primitive things consists of a set of data objects, a collection of operations over
this set and a collection of symbols denoting objects and operations. In other words, a member
of the Iswim family is determined by an algebra. Given an algebra A, the member of the family
determined by A is Iswim(A).

We can make this slightly more precise as follows. By a signature we mean a collection of
individual and operation constants (these are symbols) together with a rank or arity for each
operation constant. Given a signature S, an S-algebra A consists of a set of data objects (called
the universe of A) together with a collection of elements of the universe and operations over the
universe, one element for each individual constant and one operation of the appropriate arity for
each operation symbol. Since we will need to solve arbitrary recursive delinitions of individuals,
we require also that the universe have the structure of a domain (cpo) and that all the operations
provided by the algebra be continuous. In other words, the coordinate of a member of the Iswim
family is a continuous algebra.

To illustrate these ideas we present a very simple algebra Z of integers with arithmetic opera-
tions. The individual constants in the signature are 0 and 1.

The universe of Z (which must be a cpo) is the set of all integers together with the special
object ⊥. The object ⊥ lies (in the ordering of the elements of the universe of Z) below all
the integers; but the integers themselves are incomparable in this ordering. The partial ordering
therefore looks like and for obvious reasons ⊥ is sometimes called “bottom”.

. . . −3 −2 −1 0 1 2 3 . . .
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The operation symbols and their arities are as follows:

abs 1
eq 2
ne 2
and 2
or 2
+ 2
− 2
∗ 2
div 2
< 2
> 2
mod 2
if–then–else 3

The operations which Z assigns to these symbols are as follows (in general, kA is the operation
which algebra A assigns to an operation k in its signature):

absZ returns the absolute value of its argument if it is an integer, otherwise ⊥.

notZ returns 0 if its argument is 1, 1 if its argument is 0, otherwise ⊥.

eqZ returns 1 if both arguments are integers and equal, 0 if they are integers and unequal,
⊥ otherwise.

neZ returns 0 if both arguments are integers and equal, 1 if they are integers and unequal,
⊥ otherwise.

andZ returns 1 if both its arguments are 1, 0 if the first argument is 0 or if the first argument
is 1 and the second argument is 0, and ⊥ otherwise.

orZ returns 0 if both its arguments are 0, 1 if the first argument is 1 or if the first argument is 0
and the second argument is 1, and ⊥ otherwise.

+Z returns the sum of its arguments if they are both integers, otherwise ⊥.

−Z returns the difference of its arguments if they are both integers, otherwise ⊥.

∗Z returns the product of its arguments if they are both integers, otherwise ⊥.

divZ returns the integer quotient of its arguments (the remainder is discarded) if they are both
integers and the second is positive; otherwise the result is ⊥.

>Z returns 1 if its arguments are integers with the first greater than the second; returns 0 if the
arguments are integers with the first less than or equal to the second; returns ⊥ otherwise.

<Z returns 1 if its arguments are integers with the first less than the second; returns 0 if the
arguments are integers with the first greater than or equal to the second; returns ⊥ otherwise.

modZ , given arguments x and y, returns x − ny if x and y are integers and y > 0 and n is the
greatest integer such that ny < x; returns ⊥ otherwise.

if–then–elseZ returns its second argument if its first argument is 1; its third argument if its
first argument is 0; ⊥ otherwise.

The algebra interprets and and or as logical conjunction and disjunction, respectively, with
the integers 0 and 1 representing truth and falsity, respectively. The value ⊥ is used as the result
of applying operations to unsuitable operands (such as dividing by 0), but apart from that has no
apparent use. Its real significance will be explained later.
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The language Iswim(Z) is therefore “integer Iswim” (recall that this language was mentioned
earlier).

A more interesting example is the ‘POP’ algebra P , which will be the most important index
algebra used in the book. P is based on (some of) the data types and operations provided by the
language POP-2 (Burstall, Collins and Popplestone, 1971). The universe of P consists of numbers
(including rationals), strings, words (which are like LISP atoms), lists, and two special objects for
error and end-of-data situations. The pLucid manual in the appendix describes these objects and
operations in detail. It also gives a concrete syntax, which follows that of POP-2 as closely as
possibly.

Here is a program in Iswim(P ) (the member of the Iswim family determined by the ‘POP-2’
algebra P ).

perms
(
[a b c d]

)
where

perms(L) = if L eq [ ]
then

[
[ ]
]

else allinserts
(
hd(L), perms(tl(L))

)
fi;

allinserts(x, J) = if J eq [ ]
then [ ]
else inserts

(
x, hd(J

)
) <> allinserts

(
x, tl(J)

)
fi;

inserts(x,M) = if M eq [ ]
then [%[% x %]%]

else (X :: M) :: h
(
hd(M), inserts(x, tl(M))

)
where

h(m,K) = if K eq [ ]
then [ ]
else

(
m :: hd(K)

)
:: h
(
m, tl(K)

)
fi;

end

fi;
end

The program outputs a list of all permutations of the list [a b c d]. The concrete syntactic
conventions are those of pLucid; for example, :: denotes the list constructor operation.

2.2 The Syntax of Iswim

The language Iswim(A), its (abstract) syntax and semantics, is entirely determined by the alge-
bra A. The Iswim family is simple enough that we can give here, in a few paragraphs, a reasonably
precise specification.

Given an algebra A, its signature determines the syntax (class of legal programs) of Iswim(A).
An Iswim(A) program is one in which the expressions are built up from nullary variables and
from individual constants (nullary operation symbols) in S. Expressions are built up by applying
operation symbols in S to the appropriate number of operands, by applying function variables
to argument (actual parameter) lists and by forming where clauses. The individual and func-
tion variables defined in a where clause are called the locals of the clause. The only syntactical
restrictions necessary are to ensure the following:

(i) that each local of a clause has only one definition in the clause;

(ii) that each local of a clause is used in the clause with the same arity as its definition; in other
words, that the number of “actual parameters” of a function call must be the same as the
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number of formal parameters of the innermost enclosing definition (in particular, if a local
is defined in a clause as an individual variable, it must be used in the clause as an individual
variable);

(iii) that the formal parameters of a definition are distinct from each other and from the function
being defined;

(iv) that the formal parameters of a definition are used as individual variables in the right-hand
side of the definition; and

(v) that each operation symbol in S is used with the arity prescribed by S.

We make this more precise as follows. Given any signature S, an S-ranking is an object which
extends S by assigning a rank to all possible variables as well as to the operation symbols in S
(variables assigned rank 0 are intended to be used as individual variables). Given a signature S
and an S-ranking r, an Iswim r-expression is one in which the constants and variables are used
in a manner consistent with r (inside a where clause a variable may be redefined and used with a
different arity).

In general a r-expression is

(i) an individual symbol, i.e., a constant or variable to which r assigns the value 0;

(ii) a function variable or operation constant k together with a sequence F0, F1, . . . , Fn−1 of
operand or argument r-expressions, n being the arity which r assigns to k; or

(iii) a where clause consisting of an r′-expression (the subject) and a set of r′-definitions (the
body), r′ being any ranking differing from r at most in the ranks assigned to the variables
defined in B. The definitions in B must be compatible; i.e., there cannot be more than one
definition of the same variable.

An r-definition consists of a variable (which is being defined), a sequence of individual variables
(the formal parameters) and a r′-expression (the right-hand side), r′ being a ranking identical to r
except that the r′ assigns rank 0 to each of the formal parameters. The formal parameters must be
distinct from each other and from the variable being defined. The length of the formal parameter
list must be the rank which r assigns to the variable being defined.

An Iswim(A)-program is an r-expression, where r is the ranking which extends the signa-
ture of A by assigning the rank 0 to all variables. Programs are therefore allowed to have free
(undefined) variables, but only if these variables are used as individuals (not as functions).

2.3 The Semantics of Iswim

The semantics of Iswim is even easier to specify than the syntax. We need the notion of an
interpretation; interpretations correspond to rankings in the same way that algebras correspond
to signatures. Given a signature S, an S-algebra A and an S-ranking r, an A, r-interpretation is a
mathematical object which extends A by giving meanings to the individual and function variables
as well as to the constants—meanings consistent with the rank information supplied by r. Given I,
we can recover r and S; it therefore makes sense to speak of “the signature of I” or “the universe
of I”.

Given an algebra A with signature S, the value of an Iswim(A) r-expression E with respect
to an r-interpretation I is defined as follows:

(i) If E consists of an individual variable or constant c, then the value of E with respect to I is
the value which I assigns to c;

(ii) if E consists of an n-ary operation constant or function variable a together with operand
expressions or actual parameters F0, F1, . . . , Fn−1, then the value of E with respect to I is
g(v0, v1, . . . , vn−1), where g is the operation over the universe of A which I assigns to a, and
each vi is the meaning of Fi with respect to I;
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(iii) if E consists of a where clause then the value of E with respect to I is the value of the
subject of E with respect to the least interpretation I ′ such that (a) each definition in the
body of E is true with respect to I ′ and (b) I ′ differs from I at most in the values it assigns
to variables having definitions in the body of E.

A definition of an individual variable is true with respect to an environment iff both sides have
the same value with respect to the environment; in other words, iff the value the interpretation
assigns to the variable is the value of the right-hand side with respect to the interpretation in
question. A definition of a function variable is true iff both sides have the same value for all values
of the formal parameters; in other words, iff both sides have the same value with respect to any
environment differing from the original one at most in the values assigned to the formal parameters
of the definition. The ordering on the collection of interpretations is that induced by the ordering
on the universe of A, and by the corresponding ordering on the collection of operations of a given
arity over the universe of A. An interpretation I ′ therefore lies below an interpretation I iff each
value which I ′ assigns to a variable lies below the corresponding value assigned by I. The least
interpretation in a set of interpretations is the one which lies below all the others.

Now we see why the universe of the algebra Z had the extra object ⊥. The semantics of
Iswim require that the collection of all interpretations be partially ordered, so that there is a least
solution of the equations in the clause. The ordering on the class of interpretations is induced by
that on the operations over the universe of Z, and this ordering in turn is induced by that on
the universe of Z (in which ⊥ is at the bottom). It would not be possible to base Iswim on a
conventional notion of algebra (without the partial ordering and ⊥). The problem is that some
equations (like f(x) = f(x) + 1) have no conventional solution, whereas others (like f(x) = f(x))
have more than one. The object ⊥ is not, however, just a meaningless gimmick added to make a
definition work. This object has a very simple operational interpretation: it represents the ‘result’
of a computation that never terminates. For example, the function defined by

f(x) = if x eq 0 or x eq 1 then 1 else f(x− 1) + f(x− 2) fi;

yields (according to the Iswim semantics) the value 5 (the fourth Fibonacci number) when given
the argument 4, but yields ⊥ when given −1 as its argument. This is in accord with our operational
intuitions about recursion (see below). There are many solutions of the definition above, including
ones in which the value of f(−1) is 197! Nevertheless, we would be very surprised if an Iswim
implementation produced this value—we would want to know where it came from. In a sense, the
least solution of a definition can be thought of as the one which does not involve any ‘arbitrary’
values which are not obtainable from the definition by direct computation. Since the equation
above specifies no such value for f(−1), ⊥ is the ‘result’ returned by the least solution.

An Iswim(A) program may, as we saw earlier, have free (undefined) variables. This means
that a program may have no meaning on its own—we have to supply values for the free variables.
These extra values are the input to the program. (Iswim input is therefore ‘named’ or ‘labeled’
input.)

More precisely, let A be an algebra and let T be an Iswim(A) program with input (free)
variables. An input to T is a function (necessarily finite) which assigns to each input variable an
element of the universe of A. Let r be the ranking which extends the signature of A by giving
rank 0 to all variables (thus T is an r-expression). The output of T given input i is the value
of T with respect to any A, r-interpretation I such that the value I gives to any input variable V
is i(V ).
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2.4 A Sample Program

To help illustrate how the formal semantics coincides with the informal idea of the body of a where

clause being ‘auxiliary definitions’, consider the expression

C + A ∗ Z
where

A = 5;
B = 5;
C = Z ∗A + 1
where

A = 3;
Z = A + W ∗B;

end

end

given earlier. Let r be a ranking which assigns the rank 0 to all variables, and let I be a
Z, r-interpretation which assigns the value 9 to Z, the value 7 to W , and the value 0 to all
other variables. Let us use the formal semantics to determine the value of this expression with
respect to I.

Clause (iii) of the definition tells us that this value is the value the expression C + A ∗ Z has
with respect to the ‘least solution’ J of the equations in the body. It is not hard to see that J must
be an interpretation identical to I, except that it assigns the values 5, 5 and 115 to the variables
A, B and C. (Since A, B and C are the only variables defined in the clause, J must agree with I
on the value it assigns to all other variables.)

The expression C + A ∗ Z consists of the binary operation constant + and the two operand
expressions B and A ∗ Z. By clause (ii), then, the value of C + A ∗ Z with respect to J is the
result of applying Z’s interpretation of + to the values of the two operand expressions (i.e., to
their values with respect to J ). The value of the first is, by clause (i), the value which J assigns
to C, namely, 115. The value of the second is easily seen to be 45 (because J assigns the values 5
and 9 to A and Z, respectively) and so the final result is 160.

To check that J is a solution to the three equations in the body of the outer where clause, we
need to verify that in each case the value of the left-hand side with respect to J is the same as
the value of the right-hand side with respect to J . For the first two equations this is obvious, but
for the third we have to calculate the value of the inner where clause with respect to J .

Clause (iii) tells us that this is in turn the value that the subject expression Z ∗ A has with
respect to the least solution K of the definitions in the body. It is not hard to see that K differs
from J only in that it assigns A and Z the values 3 and 38, respectively. The value of the subject
expression is therefore 115.

This confirms that J is a solution of the equations in the outer clause; because 115 is also
the value that J assigns C. Of course this does not prove that J is the least solution; but the
definitions are nonrecursive and so have a unique solution.

The expression given above is in fact a program, because the free (undefined) variables are used
as individuals. Our calculations therefore show that the output of this program is 160 whenever
its input is {(Z, 9), (W, 7)} (that is, whenever the input value of Z is 9 and the input value of W
is 7).

2.5 The Operational Semantics of Iswim

The formal semantics of Iswim are simple and precise. This ‘least fixed point’ specification can be
used as a standard against which implementations are judged to be correct and complete. It can
also be used to reason about the language, for example to prove that certain transformation rules
(such as those given in Chapter 6) are correct. The formal definition does not, however, serve as a
very good guide for reading and writing programs, and cannot be used directly to implement the
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language. Fortunately, a large subclass of the Iswim family can be understood and/or implemented
using relatively conventional concepts.

The ‘conventional’ model is based on the idea of interpreting the definitions of individuals as
assignment statements and the definitions of function variables as function procedure declarations.
This point of view is applicable whenever the universe of the algebra parameter is (like Z) a
collection of ‘ordinary’ finite objects, plus ⊥.

The definitions in a where clause body may appear in any order, and so we cannot expect to be
able to execute them like assignment statements and get a sensible result. However, in Iswim(Z)
and in similar languages, recursive definitions of individual variables are pointless because any
variable so defined will (almost always) have the value ⊥. If we disallow circular definitions, it is
then not hard to see that there must be at least one way to reorder the definitions so that any
variable appearing on the right-hand side has already been defined by an earlier definition (or else
is a global of the clause). For example, in the expression

X + Y
where

C = A + B;
X = C ∗ C −D;
D = A−B;
Y = C + D ∗D;

end

we cannot interpret the body as a series of assignment statements: the second statement cannot
be executed because the value of D required is that computed by the statement following. But
we can reorder the definitions as follows:

X + Y
where

C = A + B;
D = A−B;
X = C ∗ C −D;
Y = C + D ∗D;

end

Now we can imagine that the evaluation of the clause proceeds as follows: the four definitions
are executed in order, then the subject expression is evaluated using the resulting ‘stored’ values.
After the evaluation, the original values of the local variables (C, D, X and Y ) must be restored.

Now suppose that some where body has a definition of the form

f(X,Y ) = P − Y
where

Q = X + Y ;
R = X − Y ;
P = Q ∗R;

end

and that elsewhere in the body an expression of the form f(5, A−B) occurs (in a position where
the above definition is relevant). We can then interpret the definition as a procedure declaration,
think of the expression f(5, A − B) as a call to this procedure, and imagine that such calls are
executed much as they are in ALGOL or PASCAL. In other words, we would imagine that the
formal parameter X is temporarily given the value 5, that Y is temporarily given the difference
of the values of A and B, that the procedure body of f (the expression on the right-hand side of
the definition of f) is executed, that the result is returned as the result of the call and that the
original values of the formal parameters are then restored.
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The ‘conventional’ model on the whole gives a correct interpretation of the special object ⊥.
Consider, for example, the program

f(3) where f(n) = n ∗ f(n− 1); end

If we use our procedural semantics as a guide, we would not expect to get any output at all from
this program. The ‘call’ to f(3) would generate a call to f(2), which would generate in turn a
call to f(1), then to f(0), f(−1), f(−2), . . . , ad infinitum. It may seem as if the procedural
semantics fails (because it produces no value) but in fact it works perfectly! The formal semantics
implies that f is the function which always returns ⊥ as its value; thus ⊥ is the output of the
whole program. The procedural semantics is therefore correct, provided we interpret ⊥ as meaning
‘nontermination’ or ‘no output’.

This is exactly the true significance of ⊥. The object ⊥ is the ‘output’ of a program which runs
forever and never produces anything. This object is the static, denotational value which corre-
sponds to the dynamic, operational activity ‘nontermination’. The various rules for combining ⊥
can all be explained quite naturally in terms of this interpretation. Consider, for example, the
fact that the sum of 3 and ⊥ is ⊥. Suppose that a computation involves adding two values, that
the (sub) computation for the first value yields 3, but that the computation for the second runs
forever without yielding a result. The ‘value’ of the sum must therefore be ⊥, and this is exactly
the (extended) sum of the two values 3 and ⊥.

2.6 Calling and Binding in Iswim

Care must be taken in applying the procedural interpretation, for otherwise mistakes can be made
concerning the scope rules. One must be especially careful about the correct interpretation of
function definitions involving global variables.

The right-hand side of a definition of a function variable definition may contain occurrences of
variables which are not formal parameters and for which there are no relevant definitions in the
right-hand side itself. Variables used in this way, like B and C in

f(X,Y ) = X + B ∗ Y + C;

are called the globals (global variables) of the function definition. Whenever a language allows
‘procedure bodies’ with global definitions, a subtle question arises as to the meaning to be given
to a global during the execution of a call that takes place in a context in which the global has a
meaning. For example, in

f(3, U)
where

B = 7;
C = 5;
f(X,Y ) = X + B ∗ Y + C;
U = P −Q
where

Q = 2;
B = 3;
P = f(B,Q);

end

end

consider the inner ‘call’ of f . What should the result be? What value should P have?
If we näıvely follow the ‘sequential’ interpretation of Iswim described above, we would simply

give X and Y the values 3 and 2 and evaluate the expression X +B ∗ Y +C. What value does B
have when we start the evaluation? The variable B has clearly been assigned the value 3 just
before this call was executed. It would be only logical to expect that the value of B is still 3, and
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that the result of the call is therefore 3 + 3 ∗ 2 + 5, i.e., 14. On the other hand, when the call to f
in the subject is executed, we would expect that the value of B would be 7, after the execution
of the first statement in the body. A little calculation shows that the final value expected should
be 92.

This reasoning is in error. The formal semantics of Iswim implies that the value of the clause
is 148. This is exactly the number that results if we assume that B has the value 7 (not 3) during
the execution of the inner call to f .

This example illustrates one of the pitfalls in using a conventional, procedural view of Iswim.
The formal semantics of Iswim implies that the language has what is called “static binding”; this
means that the global variables take their values from the environment or context in which they
are defined, not the environment in which the function is called. Since the function f above is
defined in a clause in which the global B is defined to be 7, this is the value in effect no matter
where the function is used. Static binding can be rather hard to understand in terms of the
sequential imperative interpretation of Iswim—even though some genuine imperative languages
like PASCAL or ALGOL have static binding as well.

On the other hand, if we interpret Iswim in a purely declarative way, and think of definitions
as equations which are true (for all values of the formal parameters, if any), then static binding is
completely natural. Consider the definitions

C = 5;
B = 7;
f(X,Y ) = X + B ∗ Y + C;

The first says that the value of C is 5 and the second says that the value of B is 7. The third
says that the value of f(X,Y ) is the value of X + B ∗ Y + C, no matter what values X and Y
might have. However, since we already know that B and C have values 5 and 7, respectively, we
can conclude that the value of f(X,Y ) is that of X + 7 ∗ Y + 5, no matter what the values of X
and Y might be.

The declarative view of Iswim leads to the right answer because it is much closer to the formal
semantics of Iswim. Iswim interpretations associate values with individual symbols and functions
with function variables. The assignment/calling model of Iswim is misleading because it associates
a ‘procedure body’ (not just a function) with a function variable. A procedure body is text (an
expression) which can have occurrences of global variables; but a real mathematical function is
not text (it is instead a correspondence between sets of values) and cannot have ‘global variables.’

There is another subtle issue concerning functions for which the imperative interpretation of
Iswim can prove somewhat misleading. Consider the program

f(3, 4)
where

f(X,Y ) = if X < 1 then 0 else f
(
X − 1, f(X,Y + 1)

)
fi;

end

What is its output? According to the formal semantics (and the declarative interpretation), the
answer should be 0. The variable f has been defined as the function of two variables which
always returns 0; this function is the only solution of the equation. The imperative interpretation,
however, suggests that the call to f never terminates and that the output of the program is
therefore ⊥. The problem, according to the imperative view, is that the call to f(3, 4) generates
a call to f(3, 5) which generates calls to f(3, 6), f(3, 7), f(3, 8) and so on. It is in fact true that
this program, when transcribed into PASCAL, will run for ever as it generates deeper and deeper
nested calls.

The trouble with the näıve imperative approach to function calling is that it assumes that the
body of a procedure really needs the values of all the actual parameters before a result can be
produced. The näıve method simply calculates all these values before executing the procedure
body itself. In fact, it would be quite useful to be able to define a function whose result does not
necessarily depend on all the values of the parameters—although it may not be possible to say



2.7. LAZY EVALUATION 37

ahead of time exactly which of them will be needed for a particular result. Suppose, for example,
that a PASCAL programmer was annoyed at the language’s lack of an if–then–else expression
and tried to fill the gap with a cond function defined as

function cond(P : bool; X, Y : integer) : integer;

begin

if P then cond := X else cond := Y

end;

then tried to write an assignment-free version of the factorial function as follows:

function fac(n : integer) : integer;

begin

fac := cond(n < 1, 1, n * fac(n - 1))

end

The plan will not work; no call to fac ever produces any value at all, because an attempt will be
made to evaluate n * fac(n - 1) before n is tested to see if it is less than 1.

In Iswim, however, this idea works—the users can define their own choice functions. The
output of the program:

fac(3)
where

fac(n) = cond
(
n < 1, 1, n ∗ fac(n− 1)

)
where

cond(p, x, y) = if p then x else y fi;
end

end

is (according to the formal semantics) the number 6. The reason is that the value of cond(p, x, y)
is always equal to that of if p then x else y fi, even if the value of y is ⊥—in other words, even
if y is the ‘result’ of a computation which never terminates. Of course, the näıve imperative view
would suggest that the above program never produced any value at all. The näıve view is simply
wrong.

It should be apparent, then, that a sequential imperative view of Iswim(Z), is inappropriate,
and even (if followed näıvely) wrong. It is possible, however, to patch up the interpretation and use
it as the basis for a completely correct but still conventional implementation. We need to ensure
that binding of globals is dynamic (this is not too difficult). But we also need to ensure that
function parameters are called ‘by name’ (evaluated as needed) rather than ‘by value’ (evaluated
beforehand). This is much more difficult, but not impossible—ALGOL has call by name available
as an option. Still, the imperative view is not to be recommended, even if it can be made to work.
It is simply not in the ‘spirit’ of Iswim.

2.7 Lazy Evaluation

There are, however, other operational (dynamic) interpretations of Iswim that are more appro-
priate. These methods evaluate the program instead of running it, and the various parts of a
program are evaluated as required. The evaluation techniques are called ‘lazy’ because they never
do any more work than is absolutely necessary. In particular, they do not automatically evaluate
the actual parameters of a function call. The lazy-evaluation techniques are more faithful to the
mathematical semantics. In fact, with a little care they can be made completely correct: they
produce exactly what the formal semantics specifies.

The first of these might be called the ‘demand-driven’ interpretation. In this method demands
for the values of parts of the program (initially the whole program) generate demands for values
of subexpressions. The demands propagate through the program like an infection, then gradually
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the required values start flowing back in the opposite direction. To evaluate an expression which
is (say) the sum E1 + E2 of two subexpressions E1 and E2, the evaluating machine evaluates E1

and E2 (possibly in parallel), then adds the two results. To evaluate an expression consisting of an
individual constant, the evaluator returns the value assigned to the constant by the parameterizing
algebra. To evaluate an expression consisting of a individual variable, the evaluator looks up the
appropriate definition of the variable and evaluates its right-hand side. If the variable in question
is a formal parameter of a function definition, it locates the corresponding actual parameter and
evaluates it. To evaluate an expression of the form if C then E1 else E2 fi, it evaluates C then
evaluates either E1 or E2, according to the truth value of C. Finally, to evaluate an expression of
the form (e.g.) f(E1, E2), it looks up the definition of f and evaluates the right-hand side.

Of course, demand-driven evaluation is a little more complicated than this informal description
would indicate. Nevertheless, it is not particularly difficult to implement, and is completely
correct. (The pLucid interpreter described in the manual in the appendix uses a demand-driven
evaluation scheme. [Iswim(P ) is a sublanguage of pLucid.]) The demand-driven model is suitable
as a programming aid, up to a point. The demand-driven view does not require that definitions
be presented in an executable order. In fact it encourages a more top-down approach to writing
programs: you write first an expression whose value is the desired output, but which uses variables
and functions. This expression will be the subject of a where clause. Then you write the definitions
of the where body as required, so that the definition of a variable follows its use. A demand-driven
interpreter would therefore proceed through the definitions in much the same order as they were
written (not that this would be of any particular help). This ‘define-as-needed’ approach yields a
much better style of programming and is much more in the definitional spirit of Iswim.

There is also another nonsequential way of implementing Iswim programs. The idea is to use
the rules for program manipulation, to be discussed in Chapter 7, and gradually transform the
source program into its output. The transformation method uses the definitions in the program as
rewrite rules. If the strategy for choosing the reductions to be performed is carefully defined, the
implementation will not attempt to evaluate an expression whose value is not definitely needed.

This method (reduction computation) is quite simple but cannot be recommended unreservedly
as a programming aid. The intermediate expressions can be very large and complicated and bear
very little relationship to the original program. The method is primarily syntactic; a programmer
who thinks exclusively in terms of syntax loses the advantage of having an understanding of the
Iswim semantics. The programmer should think of a function definition as defining a function—a
‘device’ that transforms data. We do not recommend thinking of a definition as a rewrite rule
which transforms text. There is more to computation than symbol manipulation.

Both these alternate operational models respect the meaning of ⊥ in their own way. Consider,
for example, the definition

X = X + 1;

whose least (indeed only) solution is ⊥. A demand-driven interpreter will cycle endlessly be-
cause each demand for a value of X leads directly to another demand for X. And a reduction
implementation will endlessly replace X by X + 1 and generate the series

X + 1, (X + 1) + 1,
(
(X + 1) + 1

)
+ 1, . . . .

In both cases the computation never terminates, and this is exactly the operational activity that
corresponds to ⊥.

Finally, we should point out that the programmer may wish to avoid using any dynamic
model at all. Iswim’s greatest strength is that its official semantics is strictly static, and uses
the well-understood concept of function. If the programmer is not concerned about efficiency
(performance) of the program, there is no real need to think in terms of operational concepts at
all. If the programmer is exclusively concerned with correctness, then the purely static semantics
is adequate on its own, because it completely specifies the output of a program.

In general, however, a programmer cannot ignore questions of performance (otherwise there
would be no programs, only specifications). A programmer is forced to think in some operational
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terms and formulate the program to reduce the amount of resources required to ‘run’ it. But this
does not mean that the programmer need worry about every tiny detail of the implementation
or that he/she need understand the workings of every part of it. Even in very practical pro-
gramming there will be parts of the program best understood purely declaratively. Furthermore,
the correctness of even the most practical and efficient program depends only on its denotational
(static) semantics, and can be considered without any reference to operational ideas. The term
“abstractness” means essentially independence from problems of representation or implementa-
tion. The formal, denotational semantics of Iswim is therefore an abstract semantics, and must
be understood by anyone who wishes to use the language.

2.8 Infinitary Programming

Our discussion of the Iswim family has so far been limited to members of the family parameterized
by an algebra of conventional, finite objects. We have seen that an Iswim of this form corresponds
more or less to a purely recursive subset of a conventional imperative language like ALGOL. With
this restriction Iswim programming is essentially a very rigorously restricted or structured form
of conventional programming.

There is no inherent reason, however, to restrict ourselves to languages indexed by such ‘con-
ventional’ algebras. There are many interesting and useful members of the Iswim family indexed
by algebras whose elements are not finite objects. These languages are far richer than mere subsets
of conventional languages, and they make possible entirely new approaches to programming.

One interesting example of a member of the Iswim family is that based on an algebra H which
is like the POP-2 algebra P but whose universe contains infinite as well as finite lists. Lists may
be infinite, and their components can be arbitrary elements of the universe of H (in particular,
the components may in turn be lists). This idea can be made somewhat more precise with the
following “domain equations” defining the universe H0 of H in terms of the domain D of non-list
POP-2 data objects:

L = 1 + H0 × L and H0 = D + L.

The first says that a ‘hyperlist’ (element of the domain L) is either empty (there is only one empty
list) or else consists of an element of H0 (its head) and a hyperlist (its tail). The second says
that an element of H0 is either an element of D (a string, a number, a word, etc.) or a list.
The equations specify only the universe H0 of H, not H itself, because they do not specify any
operations over H. However, the usual list operations (denoted by the symbols hd , tl , ::, and
so on) are easily defined once the solution to the equations is available.

These domain equations do, in fact, have a solution in which there are lists of infinite length.
The only price we must pay is that the domain H0 contains a rich variety of partial objects as
well. In the domain D the only partial (nonstandard) object was ⊥ itself—all the other objects
were normal, healthy strings, words, integers, etc. In H0, however, we must allow ‘mixed’ lists;
that is, lists in which some (but not necessarily all) of the components are ⊥. Also, we must allow
lists that ‘tail off’ after some point—lists which finally yield ⊥ when tl is applied often enough.
Finally, since a component of a list can be any other list, we must allow lists with components
which are ‘partial lists’; not to mention lists with components which are lists with components
which are partial, and so on. In short, the domain H0 allows an infinite variety of shades of gray
between the ‘pure white’ of the total objects and the ‘jet black’ of ⊥.

One great difference between programming in Iswim(H) and programming in Iswim(A) with A
an algebra of ‘finite’ objects is the following: it makes sense to give recursive (circular) definitions
of individual variables. Another difference is that it also makes sense to give recursive function
definitions without a terminating condition—the evaluation runs ‘forever’, which is fine, because
the ‘result’ is intended to be infinite.

Consider, for example, the definition

X = 1 :: X;
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In Iswim(P ), this definition would associate the value ⊥ with X, because P has only finite lists
and no finite list satisfies the equation. In Iswim(H), however, there is an infinite solution: the list

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · ]

of infinitely many 1’s (space does not permit a complete rendering of this list). Moreover, it is
the least solution to this equation and is therefore the value associated with the variable X. The
following ‘nonterminating’ definition

bump(X) = hd(X) + 1 :: bump
(
tl(X)

)
;

defines a perfectly sensible function. It expects an infinite list of numbers as its argument, and
returns as its result the infinite list formed by increasing each component of its argument by 1.
Then the definition

nats = 0 :: bump(nats);

defines nat to be the infinite list

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 · · · ]

of all natural numbers. This list is the least (in fact the only) solution to the equation.
Algebras with infinite objects permit a very different style of Iswim programming, one that

can produce some very elegant (if unconventional) programs. Here is an Iswim(H) program whose
output (value) is the infinite list.

[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 51 53 · · · ]

of all prime numbers.

P
where

nats = 1 :: bump(nats)
where

bump(X) = hd(X) + 1 :: bump
(
tl(X)

)
;

end

P = 2 :: primesin
(
tl(tl(nats))

)
where

primesin(L) = if isprime
(
hd(L)

)
then hd(L) :: primesin

(
tl(L)

)
else primesin

(
tl(L)

)
fi;

isprime(n) = nodivsin(P )
where

nodivsin(Q) = (q ∗ q > n) or
(
(n mod q ne 0) and nodivsin(tl(Q))

)
where

q = hd(Q);
end

end

end

end

The program works by removing all nonprimes from the infinite list of natural numbers. The test
for primeness uses the infinite list P of all primes which is being constructed.

There already exist a number of interpreters for ‘infinitary’ members of the Iswim family.
The best known (and first to appear) are Turner’s (1979) SASL and Henderson’s (1980) Lispkit.
These languages are based on the original, higher order language—they are variations on ISWIM,
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rather than Iswim. One of the authors (WWW), together with some colleagues at the University
of Warwick, has implemented just such a ‘Lambda Calculus’ language, based on the algebra H
described earlier. The language [which is essentially Iswim(H) is called PIFL (POP-2 Influenced
Functional Language) and has been used for an undergraduate functional programming course.

PIFL is a ‘companion’ language of pLucid—it is based on the same algebra and uses the
same syntactic conventions. As a result, there is a large overlap between the two languages (in
PIFL where is recursive); many PIFL programs are (syntactically) also pLucid programs and
produce the same output. The intersection between pLucid and PIFL is (roughly) first-order
PIFL, i.e., Iswim(P ). (It is not exactly Iswim(P ) because in PIFL recursive definitions of lists
do not always yield ⊥.) We will use the name “pIswim” to refer to Iswim(P )—in other words,
to first-order, finitary PIFL. We will also make use of Iswim(H) (first-order, infinitary PIFL) and
for this language will use the name “HyperpIswim.” pIswim is therefore a sublanguage of pLucid,
and HyperpIswim is a sublanguage of PIFL. The examples in this section are all HyperpIswim
programs and (therefore) PIFL programs as well.

It should be apparent that members of the Iswim family which allow computations with infinite
objects require more sophisticated implementations. The conventional, sequential interpretation
which (barely) covers a language like Iswim(P ) breaks down completely when faced with a language
like Iswim(H). In particular, recursive definitions of individual variables, though perfectly sensible
and usable, make no sense at all when considered as assignment statements.

The other two methods of implementation (namely, reduction and demand driven) do, however,
extend. The reduction method is the simplest to extend; we need only use equations such as

hd(X :: Y ) = X;

which tell us how to rewrite expressions involving operations on infinite data. The PIFL interpreter
works in more or less this way, as do the implementations of SASL and Lispkit.

The demand-driven method also extends, although here we have to be more careful. It is not
possible to demand the value of an expression if that value is infinite; instead, we must demand
only part of that value, namely, as much as we need to satisfy other partial demands. In the course
of a computation we may return to demand more and more parts of the same value, but we will
never need all of the value at once (this is how the pLucid interpreter works). There is, however,
no general demand-driven interpreter because the notion of what constitutes a ‘part’ of an object
depends on the nature of the objects in question.
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Chapter 3

The Language Luswim

The simple language Iswim is surprisingly powerful, in spite of its simplicity. It does lack, however,
one extremely useful ‘feature’ found in even the most primitive imperative languages—iteration.
In general it is difficult to formulate iterative algorithms in Iswim—algorithms which are based
on repetition, on the strategy of doing the same thing over and over again. It can be done (and
some of the methods will be discussed later), but not in any simple or natural style valid for all
members of the Iswim family. Iswim favors instead the recursive, divide-and-conquer approach to
computation.

As a simple example, suppose that we want to write a program which repeatedly inputs integers
and prints out a running average of these numbers. In other words, each time it reads in a number
it outputs the average of all numbers input so far. If the first number input is 3, the first number
output will be 3; if the second input is 5, the second output will be 4 (the average of 3 and 5); if
the third number input is 10, the third number output will be 6 (the average of 3, 5 and 10), and
so on.

This is quite easy to do in PASCAL: .

program avg(input, output);

var n, s, x : real;

begin

n := 0;

s := 0;

while true do

begin

read(x);

s := s + X;

n := n + 1;

writeln(s/n)

end

end.

But, of course, the PASCAL program makes essential use of assignment (to initialize and update s
and n) and control flow (to cause the updating assignments to be repeatedly executed).

There is clearly no pIswim program that can perform this task, not with the meaning of ‘input’
and ‘output’ given in the last chapter. The input of a pIswim program is a set of data objects,
one for each free variable. The output of a pIswim program is a single data object. There can
be no running average program in pIswim because no pIswim program is capable of ‘ongoing’
input/output activity. We could run the same program over and over again, but in this case it
would be of no help because the number input at any particular point would still determine the
corresponding output. For example, if at any time an input of 3 is followed by an output of 3,
then at any other time an input of 3 must produce the same value. This obviously is not the case
with the above PASCAL program. Suppose that the PASCAL program inputs 3, then 9, then 3

43
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again. The first 3 produces a 3 as the corresponding output, but the second 3 produces 5. We
conclude that the running average program cannot be formulated in pIswim, even with a generous
reinterpretation of the notion of input.

This sort of reasoning has led some to conclude that nonprocedural languages like Iswim are
inherently static, and that therefore programs in these languages are unable to perform repetition
and certainly unable to interact with the user. The PASCAL program works because it has
‘memory’—something apparently banned from Iswim.

3.1 Iteration through Sequences

Of course, Iswim is simply algebraic notation slightly adapted, and so the above argument seems
to imply that algebra and mathematics in general is incapable of describing ‘dynamic’ activity
like that engaged in by the above program. Once this point of view is carried to its logical
conclusion, however, it is finally seen to be ridiculous. A mathematician would have no difficulty
at all specifying the running average computation in a simple algebraic form. The conventional
mathematical description might be as follows:

Let x0, x1, x2, . . . be the numbers input. Then the numbers output are a0, a1, a2, . . . , where
an = sn+1/(n + 1) and sn = x0 + x1 + x2 + · · ·+ xn−1.

The flaw in the reasoning which lead to the ridiculous conclusion is that there is something in-
herently operational and dynamic about inputting rationals over and over, as opposed to inputting
a single rational. It is true that “repeatedly inputting rationals” is an operational concept; but
then so is “inputting a rational”. When a rational is input it happens at some particular time and
place, and using some particular representation.

This does not stop us, however, from abstracting (by forgetting time, place and manner) a
mathematical object, namely, the rational which was input. In other words, there is nothing to
stop us from abstracting “the input” from an “act of inputting”. Inputting one rational after
another is also a dynamic notion, but we can still abstract a mathematical object from such
activity. The mathematical object extracted is the entire sequence of rationals which is input.
This is the meaning of the phrase

let x0, x1, x2, . . . , be the numbers input.

The same can be said for output: outputting one rational after another is dynamic, but we can
abstract from such an act the output, also an infinite sequence.

A continuously operating program like the above therefore has an infinite sequence of rationals
as its (total) input, and another infinite sequence of rationals as its (total) output. For example, if
the input to the running average program is 〈1, 3, 5, 7, 9, . . .〉 (the odd numbers in increasing order),
then the output is 〈1, 2, 3, 4, 5, . . .〉 (the natural numbers in increasing order). The running average
program is in fact deterministic after all: the (total) output is determined by (is a function of)
the total input. Moreover, the input/output function is easily specifiable in ‘static’ mathematical
notation.

All this suggests that programs like the above could be written in a member of the Iswim
family in which infinite sequences of data objects are allowed and in which appropriate operations
on sequences are available. Then the mathematical specification given above could be turned into
a proper program.

As a matter of fact, sequences can be represented, in a limited way, in pIswim itself. We can
represent them as functions. The sequence 〈x0, x1, x2, . . .〉 is represented by any function f such
that f(n) = xn, for all n (the other values of f are irrelevant). Then if f represents the input to
the running average program, the following definitions

a(n) = s(n + 1)/(n + 1);

s(n) = if n < 1 then 0 else f(n− 1) + s(n− 1) fi;

ensure that a represents the desired output. To make this idea work, however, we would need to
devise a new I/O convention which would allow functions to be input and output. Also, if we
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wanted to have iterative programs that had user-defined functions as well, we would have to have
some way of distinguishing functions which are representing sequences from functions that really
are functions. This would cause even more complications. The sequences-as-functions approach
is not really practical.

A more plausible alternative is HyperpIswim, namely, the language Iswim(H), where H is
an algebra like P but containing infinite as well as finite lists (HyperpIswim was introduced in
the preceding chapter). We could adopt a simple input/output convention for infinite lists which
would permit ongoing I/O. We could restrict programs to have only one input variable, and give to
this variable as its value the infinite list of all (finite) data items input. In the same way, if output
is an infinite list of finite objects, then the program is deemed to be outputting these values one
after another. Given these conventions about I/O, the running average can be programmed as

a
where

a = quot
(
tl(s), tl(n)

)
;

s = tot(x, 0);
n = nums(0);

end

where

quot(p, q) = hd(p)/hd(q) :: quot
(
tl(p), tl(1)

)
;

tot(h, k) = k :: tot
(
tl(h), hd(h) + k

)
;

nums(k) = k :: nums(k + 1);
end

(the function quot divides two lists componentwise).

It should be apparent that quite a wide range of iterative algorithms can be expressed in Hy-
perpIswim. We have therefore demonstrated, at least in principle, that iteration can be expressed
in some members of the Iswim family.

This approach to iteration is not, however, very convincing. The resulting programs are no-
tationally very cumbersome, especially in comparison with PASCAL or even with conventional
mathematical notation. The approach is semantically cumbersome as well. PASCAL programmers
writing a simple running average program would certainly not think in terms of infinite objects (let
alone functions on infinite objects, like tot); and they would hardly consider running average to
be a problem requiring list manipulation in any form. Yet HyperpIswim programmers are forced
to think of infinite lists, even for a simple problem like this.

It would not be exactly obvious, to someone seeing the program for the first time, that an
iterative algorithm is being used. The names hd and tl do not have dynamic connotations. How are
we to know when a list ‘really is’ a list, and when it is a representation of a variable history? What
if we wanted to write an iterative list algorithm? Any problems humans have in understanding
‘iterative’ HyperpIswim could be even worse for machines.

3.2 Luswim: The Abstract Approach to Iteration

The problem with the HyperpIswim approach to iteration through sequences is that it is not
abstract. The programmer is forced to use one particular representation of sequences (the repre-
sentation as lists). As a result, lists and their operations are ‘overloaded’. It is not surprising that
the approach is cumbersome (because the programmer is forced to consider details of the repre-
sentation) and ambiguous (because there is no way to tell how a particular list is being used). The
same problems would arise if we tried to represent sequences as functions.

What we need is not another representation of sequences, but sequences themselves. In the
context of the algebraic approach, this means asking the question “What are the appropriate
operations on sequences?” To put it another way, suppose that we were going to do a lot of
iterative programming in HyperpIswim (representing sequences as lists). We should try to be
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abstract, write a sequence package, and then use only packaged operations when iteration is
intended. What operations would be included in the package?

One powerful operation is what we might call “subscripting”. The subscripting operation ex-
pects a sequence x and a natural number i and returns the i-th element xi of x. The mathematical
formulation of running average uses only subscripting plus ordinary arithmetic operations. We
could, following Arsac (1977) and others, design a programming language based on the conven-
tional notation. There are, however, serious disadvantages to such an approach. For one thing,
definitions need subscripted variables on the left-hand side, and that means that our language
cannot be a member of the Iswim family. Another problem is that programming with subscripts
tends to obscure the fact that our sequences are meant to be histories of dynamic activity. Almost
every expression the programmer writes will involve a number of subscripts, and this can prove
to be very tedious. Finally, there is the problem that the unrestricted use of subscripts can make
possible programs that do not have a simple iterative interpretation.

The trouble with subscripting is that it is too powerful. Using only subscripting forces pro-
grammers to do too much of the work by themselves; and at the same time, it allows them to
do too much, and too easily. In this respect programming using subscripts is very much like pro-
gramming in assembly language. What we need are a number of simpler, less general operations
which permit a higher-level approach to using sequences.

The simplest operations are those involving only arithmetic operations, performed pointwise
(component by component). One example is pointwise division, already used in the above example.
Another simple operation is the one that throws away the first value of a sequence—represented
by tl in HyperpIswim. This is the function we will call next ; given any sequence x,

next(x) = 〈x1, x2, x3, . . .〉

As it turns out, we need only one more operation, one which will allow us to define sequences
by recurrence, but without subscripting. This is the function we will call fby (for “followed by”);
given a rational x and a sequence y,

fby(x, y) = 〈x, y0, y1, y2, . . .〉

If we let sum denote the pointwise version of addition and quot that of division, then our running
average program is

next
(
quot(s, n)

)
where

s = fby
(
0, sum(s, x)

)
;

n = fby
(
0, sum(one, n);

where

one = fby(1, one);
end

end

(here the symbol next denotes the function next , and fby denotes the function fby).
This is much better, but can still be improved upon. We have still been forced to think up a

new set of names for the pointwise versions of the data operations (and for constant sequences).
Also, programs are very clumsy because we are forced to use functional (prefix rather than infix)
notation for arithmetic operations on sequences. For example, if in another program we wanted
the components of the sequence z to be the sums of the squares of the corresponding components
of the sequences x and y, we would have to write

Z = sum
(
product(x, x), product(y, y)

)
;

Also, we have to keep around two versions of every constant—for example, we have the single
number 1 but also the sequence one of ones.
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These problems can be resolved very simply—we banish individual data objects from the
language and use only the corresponding constant sequences. We make everything a sequence,
and then use infix notation and the old symbols (like 1 and +) to denote the corresponding
sequences and sequence operations. We redefine fby so that its first argument is also a sequence—
it places the first component of its first argument in front of its second argument. Finally, we use
fby as an infix and next as a prefix operation symbol.

Here is the running average program in the new notation

next s/n
where

s = 0 fby s + x;
n = 0 fby n + 1;

end

These decisions are remarkably easy to formalise. Given any (continuous) algebra A, Luswim(A)
is simply Iswim(Lu(A)), where Lu(A) is the unique algebra L such that

1. the signature of L is that of A plus a unary operation symbol next, and a binary symbol fby;

2. the universe of L is the collection of all infinite sequences of elements of the universe of A;

3. the partial order on L is the pointwise order induced by the order on A; if x and y are in
the universe of L, x vL y if xi vA yi for all i;

4. Any symbol o in the signature of L denotes the pointwise operation on sequences corre-
sponding to its denotation oA in A; in other words,

oL(x, y, z, . . .)t = oA(xt, yt, zt, . . .)

5. The operations nextL and fbyL are next and fby , where

fby(x, y) = 〈x0, y0, y1, y2, . . .〉, next(x) = 〈x1, x2, x3, . . .〉

The objection could be made that the user is now forced to use sequences where at least before
(in HyperpIswim) they could be avoided. ln fact the effect is quite the opposite. The Luswim
user can now think in terms of dynamically changing type-0 (data) objects rather than static,
invariant type-1 (infinite) objects. This is the whole point of Luswim (and Lucid). Programmers
who do not understand the dynamic, operational significance of Lucid ‘histories’ will have great
difficulties. Lucid is NOT a language for manipulating infinite sequences. It is a language for
expressing iterative (and more generally, dataflow) algorithms.

3.3 Iterative Programs in Luswim

The language Luswim(A) allows us to write ‘iterative’ programs because it allows us to write pro-
grams which we can think of (and even implement) in terms of iteration. Of course, a Luswim(A)
program is really just an Iswim program, and its meaning is therefore defined in terms of a purely
static concept—namely, that of least fixed point. Nevertheless, no harm (and much good) can
come of using the alternate, operational semantics, provided it is used correctly, i.e., as long as
it is consistent with (gives the same answers as) the static history-function semantics. The itera-
tive, operational viewpoint is based on the interpretation of nullary variables (and expressions) as
representing values which change with time, rather than as histories; in other words, as dynamic
objects rather than as static objects. Sometimes it is useful to keep in mind the entire history of a
nullary variable when developing a program, but sometimes it can be very distracting. Luswim(A)
is not intended to be thought of as a member of the Iswim family, with ‘facilities’ for manipulating
infinite histories. Instead, Luswim(A) is best thought of as an ‘extension’ of Iswim(A) which has
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iteration as well as recursion. The data types and operations of Luswim(A) are ‘really’ just those
provided by A itself.

The simplest Luswim definitions are those in which a single nullary variable is defined in terms
of itself alone, by means of a simple fby expression. For example, if i is defined by the equation

i = 1 fby 2 ∗ i + 1;

we can think of the values as being generated by an iterative process in which (i) the initial value
given to i is 1; and thereafter (ii) on each iteration the new value given to i is twice the old value
plus one. (This and all the following examples are in Luswim(P ), P being the POP-2 algebra.)
Thus repeated ‘execution’ of this iterative process results in i taking on the values

1, 3, 7, 15, . . .

In general, we may have two or more nullary variables defined in this way (using fby) but in terms
of each other. For example,

f = 1 fby f + g;
g = 0 fby f ;

We can think of mutually recursive equations like these as an iteration in which the variables
(in this case f and g) are updated together. It is extremely important to realize that in cases
like this the formal semantics requires us to think of the updates being performed simultaneously
but in step. We must imagine that the variables are all initialized at the same time, and that
on each iteration the new values are computed and assigned simultaneously. In other words, we
must imagine that the values of the variables never get ‘out of step’ with each other as they do
in imperative loops. In the case of f and g defined as above, for example, the generation of the
values of f and g involves (i) initializing f and g to 1 and 0, respectively, and (ii) on each iteration
computing the new values of f and g as being the old value of f + g and the old value of f ,
respectively.

The idea of variables being initialized and updated in step is not easily captured in sequential
imperative languages like PASCAL. The best we can do is simulate the effects in a sequential way.
For example, the PASCAL simulation of the last two definitions would consist of a never-ending
loop which continually changes the values of f and g. The program

f
where

f = 1 fby f + g;
g = 0 fby f ;

end

does not correspond to the PASCAL program

program fib(output);

var f, g : integer;

begin

f := 1;

g := 0;

while true do

begin

write(f);

f := f + g;

g := f

end

end.

Nor does it correspond to the program
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program fib(output);

var f, g : integer;

begin

f := 1;

g := 0;

while true do

begin

write(f);

g := f;

f := f + g

end

end.

(in which the order of the assignment statements in the body of the loop has been reversed).

If PASCAL had a multiple assignment statement we could express the algorithm for generating
the values of f and g as

program fib(output);

var f, g : integer;

begin

f, g := 1, 0;

while true do

begin

write ln(f);

f, g := f + g, f

end

end.

Of course, the multiple assignment would have to be simultaneous. All the expressions on the
right-hand side of the assignment would have to be evaluated before any change could be made
to any variable on the left. We can achieve the correct effect in standard PASCAL only by using
extra variables, e.g.,

program fib(output);

var f, g, newF, newG : integer;

begin

f := 1;

g := 0;

while true do

begin

write (f);

newF := f + g;

newG := f;

f := newF;

g := newG

end

end.

The values of f and g which should be computed are therefore

f 1 1 2 3 5 8 · · · , g 0 1 1 2 3 5 · · ·

Nullary variables like f and g, which are defined using fby, can be called loop variables. Some-
times a nullary variable will be defined directly in terms of other variables which may be defined
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using fby. Such variables, like w in

v
where

v = 1 fby (v + w)/2;
w = 100/v;

end

can be thought of as ‘auxiliary’ variables, whose values are recomputed, from the values of the
‘genuine’ loop variables, on each step. The ‘old’ value of a variable like w is not needed in the
computation of the new (and so it need not be initialized).

Another Luswim program which illustrates the differences with PASCAL is the following, which
generates the running sums of the factorials of the positive integers:

s
where

i = 1 fby i + 1;
f = 1 fby f ∗ (i + 1);
s = 1 fby s + f ∗ (i + 1);

end

The (or at least one) corresponding PASCAL program would be

program fac(output);

var i, f, s : integer;

begin

i := 1;

f := 1;

s := 1;

while true do

begin

write (s);

i := i + 1;

f := f * i;

s := s + f

end

end.

In the PASCAL program, the occurrence of i in f : = f * i refers to the new value of i,
because i has just been updated. In the Lucid version, all occurrences of i must be though of as
referring to the old value (the value i has at the beginning of the iteration step). Therefore, the
Lucid program contains the expression f ∗ (i + 1) instead of f ∗ i.

These examples illustrate an analogy between Luswim and PASCAL which is suggestive but
can be misleading. In particular, the statements (definitions) in a Luswim program are equations,
not assignment statements, and any attempt to understand them as assignments can cause great
confusion. For one thing, the order of statements in Luswim programs is irrelevant, but if we tried
to change the order of the corresponding statements in the body of the PASCAL loop, they would
behave very differently. Even when an analogous PASCAL program exists, it cannot in general
be obtained just by changing = to :=, keeping the order of statements the same.

We will see that not all Luswim programs correspond to while loops in PASCAL, and it is
also true that not all PASCAL programs directly correspond to Luswim programs. The main
difference, of course, is that the order of Luswim equations is irrelevant, whereas in general the
order in which assignment statements are executed is very important.

In a PASCAL program a variable may be the subject of more than one assignment state-
ment. At one point in the program there might appear the statement x := y + 1, and later
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on x := a * b. A Luswim clause, however, cannot include both the corresponding equations
(x = y + 1 and x = a ∗ b) because in a clause a variable can have at most one definition. In a
PASCAL program the commands which can affect the history of values of a particular variable
can be scattered throughout the entire program, while in Luswim all the information is collected
in one place, in the definition of the variable.

Both Luswim and PASCAL allow definitions and assignments, respectively, which are self-
referential, i.e., in which the variable being defined or assigned to appears in the right-hand-
side expression. There are important differences, however, in the way in which self-reference is
interpreted. In PASCAL the assignment x := x + 1 simply causes the value of x to be increased
by one. The corresponding equation x = x+ 1 can appear in a Luswim program, but not usefully:
it defines x to be its own numerical successor and any attempt to calculate a value for x results in
a nonterminating computation. The reason is that in PASCAL the occurrences of x on two sides
of the assignment symbol implicitly refer to values of x at different times (‘before’ and ‘after’).
On the other hand, Luswim definitions assert the equality of the values on either side at the same
point in time. For example, the definition x = a + b asserts that for each time t the value of x
at the time t is the value of a + b at time t. The Luswim definition x = 1 fby x + 1 can (as we
have seen) be thought of as specifying repeated assignments of x + 1 to x; in terms of histories,
it implies that the value of x at time t is the value of x + 1 at time t − 1 for all positive t. The
‘before-after’ effect is due not to equality, but to the operation fby; the value of a fby expression
at a given (nonzero) time depends on the value of the right operand one ‘instant’ earlier.

3.4 Variables in PASCAL and Luswim

The difference between the Luswim and PASCAL approaches to iteration stands out even more
clearly when we consider ‘realistic’ PASCAL programs. All but the simplest PASCAL programs
use a wide variety of mathematically (if not operationally) complicated features—for loops, if
statements, procedures, side effects, var parameters, subscripted assignment, pointer variables
and so on. Underlying PASCAL (and all imperative languages) is a view of variables (i.e., varying
entities) as passive objects subject to the unpredictable whim of the programmers. The basic
principle (with some restrictions) is that the programmers should be ‘free’, at any place in the
program or at any time during its execution, to ‘do’ anything they want to a variable. In Luswim,
on the other hand, the programmer specifies once and for all, in the definition of the variable,
everything which is going to happen to it. The programmer imagines that values of a variable will
be generated by a self-sufficient device capable of performing the steps of a computation without
anyone having to issue any commands at all. It is possible to think iteratively and operationally
without thinking imperatively.

We could, of course, devise ‘improvements’ to Luswim which would give it a more imperative
‘flavor’ and allow Luswim imitations of other PASCAL features to be added. When Lucid was first
developed, the language allowed inductive definitions: instead of defining a variable by a single
equation with fby, two equations could be used. One equation could be used to define the first

value, and another could be used to define the next (succeeding) values. The equation

i = 1 fby i + 1;

could be replaced by the equations

first i = 1;
next i = i + 1;

Inductive definitions still make sense mathematically—the equations still have a least solution,
even though individually they are not definitions of variables. The supposed ‘advantage’ of writing
the definitions in this form is that they now can indeed be thought of as assignment statements.

Eventually we decided that the ‘advantages’ offered by this approach were illusory. The problem
with inductive definitions was that they actually encouraged people to think of Lucid in terms of
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assignment, with disastrous results. For example, people tended to write things such as

next x = x + 1;
next x = x + 2;

under the impression that this would result in x being changed twice per iteration. In the end
we realized that we had only ourselves to blame for misunderstandings like these. We had misled
people into believing that Lucid was not really all that different from a language like PASCAL.

It is certainly true that Luswim is a very restricted language (though not as restricted as
it might seem), and later we will consider some extensions. The significance of any extension,
however, lies not in the details of the features being added but in the direction in which the language
is evolving. The trouble with adding inductive definitions is that it represents a step backwards
in the direction of the imperative philosophy. With the introduction of inductive definitions
programmers can once again distribute information about a variable to some extent—even if not
throughout the program. In reality, however, Lucid originally had inductive definitions; but they
were removed (as we explained) and the function fby added instead. This was an important step
away from the imperative viewpoint.

The mistakes we (the authors) made when developing Lucid can almost all be attributed to
our underestimating the potential of the nonprocedural approach. Many people feel that only
imperative languages are the ‘real thing’ and nonprocedural languages can never be anything but
pallid and impractical imitations. This deeply ingrained attitude affects even the designers of
nonprocedural languages, and produces a tendency on their part to try to simulate one imperative
feature after another, to show that their language can ‘handle’, for example, shared variables or
error interrupts.

The problems with imperative languages mentioned in the introduction (enormous complexity,
lack of formal specifications, difficulties in expressing parallelism and so on) are products of the
imperative philosophy itself, and are caused by the clash of imperative features (like assignment)
with declarative features (like recursion). If the designers of nonprocedural languages try to borrow
imperative features, they will end up borrowing the problems as well. Nonprocedural languages
will succeed by developing the strength of the nonprocedural approach, not by imitating the
weakness of the imperative. When first designing Lucid, for example, we worried for some time
because the usual one-update-at-a-time array algorithms (e.g., for sorting) appeared somewhat
inelegant in Lucid. Finally it occurred to us that perhaps this sort of strict sequentiality is not
such a good idea in the first place.

Even in a simple nonprocedural language like Luswim, one can begin to appreciate the potential
of the nonimperative approach. Using only next and fby (plus the data operations) one can
write reasonable and understandable programs, which nevertheless do not correspond to simple
while loops. Programs which correspond to while loops are based on the conventional notion of
“variable” and use the special Lucid operations in a very restricted way. In such ‘conventional’
programs next does not appear at all, and fby appears exactly once for each ‘loop variable’. On
the other hand, the formal specification of Luswim(A) (i.e., Iswim(Lu(A))) places no restrictions
whatsoever on the expressions which may appear in right-hand sides. Many of these formally
acceptable definitions (such as x = next x) are completely senseless. These ‘senseless’ programs
usually specify the value ⊥, which in many ways acts as a ‘default value’. On the other hand,
there are many different (and perfectly sensible) ways in which the Lucid operations can be used.

The operation next, for example, can be used to give the effect of a ‘look ahead’ which allows
us to refer to the value a variable will have after the execution of the current iteration. In the
factorial sum program the variable s (which accumulates the sums of the factorials) was defined as

s = 1 fby s + f ∗ (i + 1);

and not

s = 1 fby s + f ;
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because s is the sum of all factorials generated so far, up to and including the present one. The
new value of s must therefore be the present value of s plus the new value of f , i.e., the present
value of s plus the present value of f ∗ (i + 1). In PASCAL we can avoid writing f ∗ (i + 1) by a
clever ordering of assignment statements. In Lucid, reordering the definitions is (as we explained)
pointless; instead, we simply write

s = 1 fby s + next f ;

and nothing could more clearly express the way in which s is to be updated. In the same way, we
could write

f = 1 fby f ∗ next i;

If we think of variables in the Pascal way, this use of next is hard to understand—how do we
know what value will next be assigned to i? On the other hand, if we think of variables as varying
values produced by autonomous processes, there is no problem. We can easily imagine that the
new values of f are available sooner than those of s.

In the example just given, this calculation of next i can be carried out symbolically—it is
simply the second operand (i + 1) of the fby expression which defines i. The operation next

can therefore be ‘massaged’ out of this particular program. This yields exactly the program given
previously, which (we maintain) is somewhat less clear. Lucid’s ‘temporal’ operations make it much
easier for programmers to use (and to convey) the operational significance of their programs.

It would be very difficult, if not impossible, for an imperative language like PASCAL to incor-
porate an operation like next. According to the imperative viewpoint, the machine waits passively
for commands to be obeyed. How can such a witless slave be expected to predict what it will next
be ordered to do with a particular variable?

In the example programs just cited it was possible (if not desirable) to remove the operation
next. This was so because (roughly speaking) the operation was not used to define a variable in
terms of its own future; in the revised factorial sum program, for example, s was defined in terms
of the future of f , f is defined in terms of the future of i, but i is defined in terms of previous
values of i only. [This notion is made more precise in Wadge (1981).]

It is possible, of course, to write legal Luswim programs in which a variable is defined in terms
of its own next value. Usually, such a definition specifies only the value ⊥. Sometimes, however,
such programs can produce sensible results. The program

howfar
where

howfar = if x eq 0 then 0 else 1 + next howfar fi;
end

is quite legal. If the values of x are of integers, the value of this expression at any point in time
is the amount of time which will elapse before the value of x is next 0. For example, if x takes on
the values

1, 6, 4, 0, 9, 2, 1, 4, 3, 0, 6, . . .

then the program takes on the values

3, 2, 1, 0, 5, 4, 3, 2, 1, 0, . . .

These values are (naturally enough) computed by ‘looking into the future’. This program cannot
be understood as an iterative process in the way we have been doing. Of course, an implementation
of Lucid based on iteration (say, a compiler) might decline to accept such a program.

The operation fby also has more potential than is revealed by its use in transcribing while-like
programs. We can use two fby’s in a single expression to specify explicitly the first two values of
a variable. For example, the value of the expression

1 fby 3 fby 5
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(fby associates to the right) is 〈1, 3, 5, 5, 5, . . .〉. In the Fibonacci program

f
where

f = 1 fby f + g;
g = 0 fby f ;

end

the variable g is defined in terms of the variable f only. We can eliminate g from the program
by replacing the occurrence of g in the definition of f by the expression 0 fby f . In the resulting
program

f
where

f = 1 fby f + (0 fby f);
end

f is defined directly in terms of itself. In general, the value of the expression

(x fby y) + Z

is equal to that of

(x + first Z) fby (y + next Z)

Thus we can rewrite the program as

f
where

f = 1 fby (1 fby f + next f);
end

(because 0 + first f is 1). The parentheses are not really necessary—the precedence of fby is
lower than that of +.

This program is not, however, another example of a variable being defined in terms of its own
future. The operation fby introduces a ‘delay’ of one time unit, and two of them introduce a delay
of two time units. In the expression f + next f on the right-hand side, occurrences of f refer to
the value which that variable had two iterations previously, and so next f refers to the value on
the previous iteration. Using two nested fby’s we can define a variable by specifying explicitly its
first two values and giving an expression for the value of time t+ 2 in terms of the values at times
t + 1 and t. To give another example, the definition

h = 0 fby
(
1 fby 3 ∗ (next h)− h

)
;

specifies that h will take on the values

0, 1, 3, 8, 21, 55, . . .

In the same way three fby’s can be used to specify a variable in terms of its previous three values,
four allow us to go back four instants in time and so on.

3.5 Continuously Operating Programs

Probably the most unconventional idea in Luswim is that computations do not terminate. A
conventional program which runs forever given a particular input is usually considered to be in a
failure mode (e.g., in an infinite loop) caused by errors in the program or in its data. In actual
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fact, however, the view that infinite or nonterminating computations are inherently undesirable
is not very realistic. In most engineering applications a device (a bridge, a telephone circuit, a
pump or a car) is considered to have failed when it ceases to perform the activity for which it was
designed. The better the design and manufacture of a product, the longer its lifetime. The ‘ideal’
product would therefore last forever, i.e., it would be a continuously operating device. There are
a few exceptions (e.g., explosive weapons), but in general engineers are concerned with building
objects which operate indefinitely.

It is certainly true that some programs are meant to be used only once (say to compute the
first million primes), but genuine ‘one-off’ efforts are very rare. Most supposedly finite programs
(such as compilers) are intended to be run repeatedly (and indefinitely) on different sets of data.
Sometimes a program is devoted to maintaining a single data structure, such as a master file, which
slowly evolves over a period of time. Finally, there are more and more examples of “real-time”
systems (operating systems, process-control systems, air-traffic-control systems) which must be
continuously operating in a very literal sense. Some software engineers now advocate that even
supposedly conventional programs are best thought of as running uninterruptedly.

Lucid’s infinite histories are therefore not as unrealistic as they might seem. The input to a
program which runs indefinitely is the infinite history of the values ‘fed into’ it, and the output
is the infinite history of all the values produced. A Lucid program can therefore be thought
of operationally as repeatedly reading in values of its input variables and producing values as
its results (output need not be produced at the same rate that input is consumed). In Lucid
this is the more natural approach, and continuously running programs are if anything easier to
write than “finite” ones. The following Lucid program, m + n, for example, can be thought of
as a continuously operating program which repeatedly inputs pairs of numbers and outputs their
sums. It corresponds roughly to the PASCAL program

program sum(input, output);

var m, n : integer;

begin

while true do

begin

write(‘n?’);

read(n);

write(‘m?’);

read(m);

writeln(m + n)

end

end.

In the same way the program (
−b + sqrt(d)

)
/(2 ∗ a)

where

d = b ∗ b− 4 ∗ a ∗ c;
end

repeatedly reads in the coefficients of a quadratic and outputs the largest real root (the result is
an error object if there is no real root).

Although Luswim programs are all fomally nonterminating, the input/output conventions of
pLucid (and of its sublanguage pLuswim) allow us to write programs whose actual output is finite.
To terminate a pLucid program, we simply ‘output’ the special end-of-data object denoted in the
language by eod. When the output routine of the pLucid interpreter is asked to output this special
object, it closes the output stream and terminates normally. For example, the program

3 fby 5 fby eod,

will put 3 and 5 on the standard output, then terminate.
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The pLucid interpreter applies an analogous convention to its input stream. When an end-of-
file condition is encountered on the input stream, it automatically returns the end-of-data object
whenever the evaluator demands later values of the input. The end-of-data value is propagated
by the data operations and is treated almost like the error object. Terminating the input stream
of most ‘normal’ programs (like the running sum program above) automatically causes the output
stream to terminate as well, after which the interpreter will make a normal exit. (Notice that
certain histories, such as those of the form 〈3, 2, 5, eod , 4, 7, eod , . . .〉 cannot be input or output
directly—the convention does not permit it.)

We should emphasize, though, that eod is not part of Lucid itself, not in the same way that next
or fby are. This special object is provided by the algebra P . Other members of the Lucid family
could be indexed with different algebras containing different special objects (such as array-index-
out-of-bounds) and this would allow different input/output conventions on different interpreters.
From the formal, mathematical point of view, input and output are always infinite sequences, even
if all but a finite number of their components are the end-of-data value.

3.6 Programs with Memory

The two programs above both specify pointwise functions, i.e., the value of the output at time t
depends on the values of the inputs at time t. By using the Lucid functions, however, we can
write programs whose outputs vary with time, programs which can remember input values from
one iteration to the next. The program

s
where

s = 0 fby s + x;
end

outputs a running total of all the values previously input. If the input (i.e., x) takes on the values

2, 0, 3, 5, 2, 8, . . .

then the output will be

0, 2, 2, 5, 10, 12, 20, . . .

This running total program corresponds to the PASCAL program

program tot(input, output);

var x, s : integer;

begin

s := 0;

while true do

begin

write(‘x?’);

read(x);

s := s + x;

writeln(s)

end

end.

(As in previous examples, the PASCAL version prints its own prompts.) Here is a modified version
of the “total” program

t
where

s = 0 fby t;
t = if x ne 0 then s + x else 0 fi;

end



3.7. FUNCTIONS IN LUSWIM 57

which acts as before except that it interprets a “0” in the input as an instruction to reset the
‘accumulator’ s to 0. If x takes on the values

3, 5, 7, 0, 1, 6, 6, 4, 0, 2, 0, 3, 5, . . .

then the output will be

3, 8, 15, 0, 1, 7, 13, 17, 0, 2, 0, 3, 8, . . .

Another program which is not pointwise is

(next next x)− (2 ∗ next x) + x

(the parentheses are not really necessary). This program computes the second difference of its
input. If x takes on the values

2, 3, 7, 16, 32, 57, . . .

the output will be

3, 5, 7, 9, . . .

The program uses the Lucid operation next to look ahead two steps in the future of its input.
This does not mean, however, that an implementation would require a clairvoyant keyboard; only
that the output will lag the input by two times instants. In this program as in many others, we
cannot interpret the time index as being real physical time. The semantics does not (as it might
seem) imply the existence of a central co-ordinating clock.

These are just some of the many different effects which can be achieved with the Luswim
functions next and fby. It cannot be emphasized too strongly that the comments in this section
are not additions or extensions to Luswim. They are just that—comments on the formal semantics
of Luswim, i.e., on the semantic of Iswim in general and the definition of Lu(A).

3.7 Functions in Luswim

We have so far considered only “zero-order” Luswim programs, i.e., programs in which the variables
are all nullaries. This corresponds roughly to restricting ourselves to a subset of PASCAL without
functions or procedures. One of the great advantages of Lucid’s ‘algebraic’ approach to iteration
is that functions come ‘free of charge,’ so to speak. Luswim(A), i.e., Iswim(Lu(A)), already allows
user-defined functions, including recursive definitions (there are no procedures, of course, because
there are no side effects). There are therefore no design decisions to be made as regards function
definitions in Luswim. In this section, as in the previous one, we can (and must) restrict ourselves
to investigating the consequences of the formal semantics of Luswim.

The Luswim(A) programmer can include function definitions in his or her program (i.e., use
variables as other than nullaries) but, since Luswim(A) is Iswim(Lu(A)), they denote operations
over the universe of Lu(A). In other words, their denotations take histories as arguments and
produce histories as results. They are not literally data operations, i.e., operations over the
universe of A.

There is, however, a large class of history operations whose members are ‘really’ just data
operations. These are the pointwise operations; an operation is pointwise if (informally speaking)
the value of its result at a given point in time depends only on the value of its arguments at that
point in time. More precisely, an n-ary operation f over Lu(A) is pointwise iff

f(A0, A1, . . . , An−1)t = f(A′0, A
′
1, . . . , A

′
n−1)t′

whenever (Ai)t = (A′i)t′ for all i less than n.
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Pointwise operations are, in a sense, data operations “in disguise”: it is easy to show that
an operation f is pointwise iff there is a data operation d (i.e., an operation d over the universe
of A) such that the value of the result off at time t is the result of applying d to the values of
the arguments at time t. On the algebra Lu(A), the ordinary symbols are assigned the disguised
pointwise versions of the operation associated with them in A. If a Luswim(A) programmer writes
a definition which does not use any of the special Lucid operation symbols, the operation defined
will be a pointwise version of the operation specified by the same definition considered as an
Iswim(A) definition. For example, if a Luswim(Z) program contains the definition

f(x, y) = x ∗ x + y ∗ y;

(Z the algebra of integers), then the operation associated with f will be a pointwise history
operation f such that

f(x, y) =
〈
x2
0 + y20 , x

2
1 + y21 , x

2
2 + y22 , . . .

〉
for any histories x and y. This pointwise interpretation principle applies even to recursive defini-
tions; if

Fac(n) = if n < 1 then 1 else n ∗ Fac(n− 1) fi;

then Fac will denote the history operation which, given a history, returns the history of factorials
of the corresponding components of the argument.

Programmers can think operationally in terms of ‘calling’ and ‘returning’ provided their ‘re-
cursion time’ is in a sense orthogonal to Lucid time. The above definition, for example, states that
the value of Fac(n) at time t is the value of n ∗Fac(n− 1) at the same time t, if the value of n at
that time is at least one. Recursive computations must be thought of as running to completion
between the steps of the iteration.

The ‘pointwise-interpretation’ principle extends to sets of mutually recursive definitions, and
in fact to entire programs. If a Luswim(A) program uses none of the special Lucid functions, it
acts as a continuously operating program which repeatedly accepts input and produces the output
computed by its Iswim(A) version (i.e., by the same program considered as an Iswim(A) program).

In general, however, Luswim programmers use Lucid operations in their definitions. The
operations defined are therefore not just pointwise versions of data operations. Instead, they can
display the kind of dynamic properties possessed by the Lucid functions.

As a simple example, the definition

diff (a) = next a− a;

specifies diff to be the difference operation on histories. If x takes on the values

0, 1, 4, 9, 16, 25, . . .

then diff (x) will take on the values

1, 3, 5, 7, 9, . . .

The “second-difference” program, which appeared in the previous section, could therefore be
rewritten

diff
(
diff (x)

)
where

diff (a) = next a− a;
end
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We could also define an operation secondnext , which takes us two steps into the future, and rewrite
the program as

secondnext(a)− 2 ∗ next a + a
where

secondnext(a) = next next a;
end

Recursive definitions which use the Lucid functions can specify powerful ‘dynamic’ operations
which produce unusual effects. For example, we can define a parameterized version of next:

find(i, a) = if i eq 0 then a else find(i− 1, next a) fi;

If i takes on the values

0, 1, 2, 0, 1, 2, . . .

and a the values

0, 1, 4, 9, 16, 25, 36, 49, . . .

then find(i, a) will take on the values

0, 4, 16, 9, 25, 49, . . .

We can rewrite our second difference program once again as

find(2, x)− 2 ∗ find(1, x) + find(0, x)
where

find(i, a) = if i eq 0 then a else find(i− 1, next a) fi;
end

We can also write the program as

df (2, x)
where

df (i, a) = if i eq 0 then a else df (i− 1, next a− a) fi;
end

In this program df denotes a parameterized differencing operator—df (i, a) is the i-th difference
of a. Finally, we can define a summation operator as follows

tot(x) = s
where

s = 0 fby s + x;
end

3.8 Continuously Operating Functions

The claims just made may well appear paradoxical, if not completely incredible, because there is
no way in which the usual calling–stacking–returning operational view of recursion could possibly
account for the behavior just described. Nevertheless, these claims can be verified by referring to
the semantics of Iswim and the definition of Lu(A). (They can also be validated by running the
programs on the pLucid interpreter.)

The results of the programs appear somewhat less strange if one forgets (for the moment)
about the operational interpretation of histories and thinks of them as static objects—in other
words, if the programs are understood as Iswim programs over the algebra Lu(A), and not Luswim
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programs over A. Earlier in the chapter, however, we explained at length that it was in general
not advisable to think this way. Must we conclude that iteration is after all incompatible with
recursion? That Lucid has, like many other languages before it, broken down with the introduction
of “procedures”?

Fortunately, this is not the case, as we indicated in the introduction. There is a way to extend
the operational, iterative view of Lucid programs to include those with nonpointwise user-defined
functions. To do this it is necessary to modify the operational notion of “function” in exactly
the same way as the operational notion of program is modified to mean continuously operating
program. What is needed is the notion of a continuously operating function; what we have already
called a “filter”.

The usual PASCAL calling–returning view of functions (and procedures) sees them as basically
‘one-off’ devices. They behave like PASCAL programs themselves; they accept a set of input,
perform some computations, and produce the ‘final’ result. Of course these functions are, like
programs, intended to be run over and over again, but there can be no connection between different
calls (just as there can be no connection between different runs). This view of functions is unable
to account for the activity of something like tot , defined earlier. Of course, we can imagine tot
being given its input history all at once and then later producing the result history all at once,
but then we lose sight of the operational significance of histories.

In order to understand tot we must imagine that it is a ‘black box’, a ‘filter’ which is repeatedly
being given input values, which is repeatedly producing output values, but which maintains its
identity between inputs. If we allow these devices to retain some internal memory from one input
to the next, then it is easy to see that they can compute nonpointwise history functions. For
example, the running total history function (the denotation of tot) can be computed by a filter
capable of remembering one natural number—the total of the inputs accepted so far. For each
input, the box accepts the argument, increases its memory by that amount, and emits, as the
result, the new total.

The concept of a filter (‘continuously operating function’) is obviously closely related to the
idea of coroutine [see Kahn and McQueen (1977)]. Coroutines are PASCAL-like functions which
have persistent internal memory both explicitly, in that values of local variables are saved between
calls, and implicitly, in that execution takes up where it left off after the last return. ALGOL,
with its own variables, offers a similar if more restricted version of the coroutine facility. With
own variables, ALGOL functions have explicit persistent memory, but not implicit (calling the
function a second time, it starts again from the beginning, but with the own variables retaining
their values from the previous call). Luswim filters can be thought of as working this way, but
with one important difference.

In ALGOL every call to the function uses the same own variables, whereas in Luswim each
function applied to a distinct history (or histories) (with distinct global histories), corresponds to
a filter with its own persistent memory. Thus in

tot(n ** 2) + tot(n ** 3)

there are two filters, one keeping a running sum of the values of n ** 2 and one keeping a running
sum of the values n ** 3. Moreover, we have to imagine that filters are given inputs all the time,
even though we might only need the value of the function at one particular time. (These spurious
invocations of the filter are simply to update the values of the local variables; the values of the
outputs are discarded.) For example, in the program

if p then a else tot(n ** 2)/tot(n ** 3) fi
where

tot(b) = next s
where

s = 0 fby s + b;
end

n = 1 fby n + 1;
end



3.9. FILTERS AND RECURSION 61

we must imagine there are two filters as just described, but we must imagine them working for all
values of n ** 2 and n ** 3, even though we only need their values when p is false.

3.9 Filters and Recursion

The notion of coroutine or filter is not, however, quite general enough to give an operational
meaning to all nonpointwise functions. The problem is that a coroutine is required to return a
value every time it is called; and we have already seen (while discussing continuously operating
programs) that the use of next applied to the input can cause the output to lag. If we drop the
requirement that our black boxes (continuously operating filters) produce output for each input,
we can think of any history function which can be defined in a Luswim program as being computed
by some such device.

When a function is defined recursively, an arbitrary number of filters can be set up. For
example, if f is defined as follows:

f(x) = x fby f(x) + f(next x);

and f is used with argument x which takes on the values x0, x1, x2, . . ., then a filter is set up
for f(x), one for f(next x), another for f(next next x) and so on. The filter for f(x) outputs x0

and sets up a filter for f(next x), whose output is to be added to the output of f(x) itself, i.e.,
to x0 followed by . . . . The filter for f(next x) outputs x1 and sets up a filter for f(next next x)
whose output is to be added to that for f(next x) and so on.

A little study will show that the output values of f(x) are

d0, d1, d2, . . .

where

dn =

n∑
i=0

(
n

i

)
xi

i.e., the values

x0, x0 + x1, x0 + 2x1 + x2, x0 + 3x1 + 3x2 + x3, . . .

What actually happens, with this growing set of filters all working in parallel, is hard to imagine,
to say the least, but we can easily verify that the indicated sequence is a solution to the equation
defining f .

Fortunately, we can produce function definitions whose operational interpretation is more
straightforward. One example is the function first, with the definition

first(x) = y
where

y = x fby y;
end

This function corresponds to a filter which outputs its first input value continually, independent of
any later input values. This function is so useful that we will adopt it as a basic Lucid operation,
along with next and fby.

Using first we can define a number of other useful functions. One particularly useful one is
whenever, with the definition

whenever(a, b) = if first b
then first a fby whenever(next a, next b)
else whenever(next a, next b)
fi;
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(The pLucid interpreter supplies whenever as a predefined infix operator.) It corresponds to a
filter which inputs values for a and b at the same rate and outputs the value of a if the value
of b is true (otherwise it just carries on inputting). Actually, if the value input for b is false,
the value input for a is not even looked at; the filter is not “strict”. The operational reality of
nonstrict filters (i.e., filters which can ‘skip’ parts of their input) is questionable, but they are
useful conceptually. (That is, the operational notion of ‘filter’ is useful in developing programs,
but an actual implementation may have to work differently.)

The function whenever also is included as a basic Lucid operation (as the infix operator
whenever), as is the following function upon (read it as “advanced upon”), with the following
definition:

upon(a, b) = first a fby if first b
then upon(next a, next b)
else upon(a, next b)
fi;

(The pLucid interpreter also supplies upon as an infix operator.) This corresponds to a (non-strict)
filter which inputs values for a and b and outputs a and repeats it, while inputting values for b
(not a), until the value input for b is true, at which point it inputs a value for a, and outputs that
repeatedly, while inputting values for b, until b is true again, and so on.

The operational interpretation of nonpointwise functions will be considered more closely in
the chapter on Lucid as a programming language. Nonpointwise functions are the result of the
constructive interaction of the two features, iteration and recursion. Lucid is able to form a
synergistic union of these two features because in Lucid they both appear in an equational form;
in Lucid both iteration and recursion are based on the notion of the least fixed point as a set of
equations. In a language such as PASCAL or PL/I, iteration and recursion appear to clash, but
the conflict is really between two very different points of view, namely, the imperative and the
declarative. In Lucid this conflict has been resolved, and the various features are free to cooperate
fruitfully.

Some of the ways in which the features work, in particular the usefulness of nonpointwise
functions, were not foreseen by the authors. Our original intention was to develop Lucid as some
sort of mathematically clear single-assignment language; we had no intention of complicating
the task by adding a ‘coroutine feature’. The ability to define nonpointwise functions was a
serendipitous consequence of the prescriptive use of the denotational (history-function) semantics.
It seems that nonprocedural languages in general tend to have extremely useful features not
consciously introduced by the designers. We will see further examples of this phenomenon in
Lucid in the later chapters.

3.10 Programs and Flow Graphs

One surprising fact about Luswim is that it does not really look like a dataflow language. It
looks more like one of the functional, lambda-calculus languages—which is hardly surprising,
considering that Luswim is a member of the Iswim family. Nevertheless, someone reading about
a “dataflow language” would naturally expect to see dataflow networks. They might even expect
that a dataflow language to be a graphical language. We gave a simple example of a dataflow
network in Chapter 1. So what has happened to them?

Luswim (and Lucid) are textual languages; a program is a one-dimensional sequence of char-
acters, not a two-dimensional network of processors and communication lines. Nevertheless, the
user can still think of the program as specifying a network and can still use network diagrams
as a programming aid. Within certain limits, every Luswim program determines a network and
every network determines a program. Text and dataflow diagrams are related in Lucid in much
the same way that text and control flow diagrams are related in PASCAL. Text and diagrams
are not different ways of expressing different things; they are different (complementary) ways of
expressing the same things.
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The relationship between flow graphs and sets of equations was first explicitly stated by
Kahn (1974), though the idea is implicit in work in many other areas of engineering concerned
with flow in networks. In Kahn’s scheme the arcs (communication lines) in a network correspond
to individual variables in a program, and processing nodes (filters) in a graph correspond to op-
erations or functions in the program. The correspondence is simplest if filters are allowed only
one output line each, and all duplicating of data is done by special copy nodes. In this case the
translation of a network into equations is straightforward. Each variable V corresponds to the
output of some filter f whose input lines correspond to the variables X, Y , Z, . . . . Then the
definition of V in the textual program is

V = f(X,Y, Z, . . .)

Input arcs have no definitions in the textual program.
For example, the graph

f g

h

Y //A //

Z ////
��

X

��

corresponds to the equations

Y = f(A,X);

X = g(Y );

Z = h(Y,X);

The copy nodes have not been drawn at all; instead, they are shown as T-junctions. Feedback
loops in the graph correspond to recursively defined variables. In the above, for example, the
values output by f are processed by g and are then fed back in to one of the inputs of f . As a
result, in the textual program the variable Y is defined indirectly in terms of itself.

When Kahn first presented this correspondence, the equations were used to describe the ac-
tivity of the network. Kahn stated the principle that this activity is, under certain circumstances,
exactly described by the least fixed point of the program interpreted over a domain of histories.
[Faustini (1982) gives a complete proof of this principle.] In Lucid, we have reversed the relation-
ship between graphs and programs. It is the text which is the original version, and the network
is understood as the description (or implementation) of the text. Nevertheless, the textual and
graphical are still complementary representations of the same basic dataflow ‘algorithm’.

It would be possible to give a precise specification of a graphical form of Luswim, and prove
a version of the Kahn principle for the two forms. We could even produce a graphics-based
implementation which would allow the user to draw graphs directly. This would eventually be
worth the (rather large) effort involved but takes us far beyond the scope of this book. For the
time being we will have to content ourselves with the informal use of dataflow diagrams as an aid
to programming and documentation.

Our experience in using graphs this way has been very positive. However, for a long time we
found it very difficult to draw diagrams of any size. They tended to be very large and rambling,
and many drafts were required before the arcs lined up neatly. Finally we discovered a simple
graph-drawing methodology which allows most graphs to be drawn quickly with a minimum of fuss.

The idea behind the methodology is the thesis that most filters ‘basically’ have one input and
one output, and that most dataflow graphs are ‘basically’ simple pipelines. (In UNIX, pipelines
are the only form of graph allowed by the shell language.) Of course this principle is not literally
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true, but we can use it to produce a first approximation. More general graphs are produced by
imagining that some filters have extra ‘auxiliary’ inputs, and that some pipelines have ‘auxiliary’
feedback and feed-forward lines leading into these auxiliary ports. Sometimes these extra ports
are fed by whole auxiliary pipelines running in parallel.

Consider, for example, the following running average program.

next s/n
where

s = 0 fby x + s;
n = 0 fby n + 1;

end

The basic plan is that the input x is run first through an ‘accumulating’ filter, then through a
dividing filter, then through next. The values of n are generated by an auxiliary pipeline. The
resulting diagram is

0

+ fby / next

+ fby

1 0

// // //
OO

// //
��

// //
�� ��

��

3.11 Implementing Luswim

Throughout this chapter (and in the first chapter) we have been talking about Lucid in terms of
dataflow, but we have never made this concept very precise. This was deliberate since we were try-
ing to convey a programming philosophy rather than a precise operational concept that describes
the behavior of a particular machine configuration. In this section we will describe (briefiy) how
programs actually might run. This will not replace the concepts introduced earlier, even when
they seem to be in conflict. The formal semantics of Lucid is denotational, not operational. The
operational ideas discussed earlier can therefore be used as a guide, but do not have to be followed
as a specification.

We have already seen (in earlier sections) that many Luswim programs are really very ‘conven-
tional’ and correspond to ordinary iterative programs in a language like PASCAL. This suggests
that such programs could be compiled into sequential code and run on a standard von Neumann
machine. This is in fact possible. Farah (1977) defines a ‘compilable’ subset of Lucid which can
be translated into an ALGOL-like imperative language.

There are, however, obvious limitations to the compiling approach. Although individual clauses
can be understood as iterative algorithms, the same cannot usually be said of programs as a whole.
A Luswim program is best understood as a network of filters processing streams of data. This
form of computation cannot easily be described in terms of iteration, in which a number of ‘global’
values are repeatedly updated.

The problem is especially acute with Luswim programs which use nonpointwise user-defined
functions (such as tot in §3.7). The concept of filter is completely missing from PASCAL. In
PASCAL, functions can have no local memory which persists from one call to the next. In a
sense, PASCAL allows only pointwise functions. It is possible to simulate filters in PASCAL, but
it is very difficult and very complicated. Values retained between calls must be stored in variables
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global to the function definition. This is extremely inconvenient; it is also incorrect for filters
which are being used in more than one place. There is no simple way to simulate the way in which
different ‘invocations’ of a Luswim filter operate completely independently.

Recently, a number of new languages [such as OCCAM, described in INMOS (1982)] have
appeared which attempt to remedy this defect. These languages are still imperative (based on the
assignment statement) but nevertheless have moved away from the conventional concept of a single
central store. In these languages a function definition is treated as a ‘template’ for a process with
internal memory. The programmer is able to set up separate ‘instances’ of a template, each instance
having its own identity and its own persistent internal memory. As the computation proceeds,
processes (or “actors”) can send messages to each other and even (though not in OCCAM) cause
more actors to be created or destroyed dynamically.

These languages are not really dataflow languages (their model of computation is much more
elaborate), but dataflow algorithms can be expressed in them. There is therefore some hope
that Luswim (and Lucid) could be compiled into one of these ‘message-passing’ languages. Pil-
gram (1983) describes a technique that works for a large number of Luswim programs. One great
advantage of this approach is that the target languages are low level and basically still conven-
tional. This means that the compiled code could be run on a system built from more or less
conventional components.

The compilation process is not, however, as simple as it might appear, even when the target
language allows actors as well as ordinary functions.

The first problem is that it is not always possible to compute the values of variables in strict
‘chronological order’. It may well happen that the computation of (say) the time-2 value of x needs
the result of the computation of the time-12 value. Programs with ‘anachronistic’ dependencies
can arise whenever the operation next is used. Sometimes the anomalies are small (involve only
one or two time instants) and can be smoothed out by a compiler. Sometimes, however, the time
inversion can be very large. For example, the following program

first answer fby eod

where

answer = if iseod n then [ ] else n :: next answer fi;
end

produces a list of all those objects read in (until an eod was encountered). This program works
by defining answer in terms of its own future. The implementation must somehow remember all
the values of n read in before the eod was reached, and these elements are then added on to the
empty list in reverse order, using ::. This program could of course be written recursively, or it
could be written iteratively using an 〈 〉 to add successive elements of the current value of n to the
end of a list which starts off as [ ]. (This latter algorithm would involve a great deal of copying.)
If the compiler were given the (reasonably efficient) definition above, it would have no choice: it
would have to remember all the individual values of n. This is rather a lot for a mere compiler to
discover. Instead, it would probably decide that the definition of answer violates the requirement
of any compiling algorithm that the elements in a sequence be evaluated in the order in which they
appear in the sequence. The compiler could then politely decline to accept the above program.

It could be argued that the program just given is stylistically bad or even pathological (it can
hardly be understood in terms of pipeline dataflow). Unfortunately, there is another obstacle to
compilation which arises in even apparently innocuous programs. The second problem (a far more
serious one) arises because the filters in a Luswim program may not require all the values of their
input. The needs of a filter may be intermittent : it might require (say) the values at times 0 and 1
but not those at times 2 and 3; then it may need those at times 5, 6 and 7, but not at times 8 and 9;
and so on. Any attempt to compute these intermediate values (as is required by näıve pipeline
dataflow) will involve the implementation in unnecessary computations. These computations
will certainly waste resources and may even cause deadlock (if the extra computations fail to
terminate).
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The program

diffac(n) whenever n < next n
where

diffac(n) = fac(next n− n);
fac(n) = if n eq 1 then 1 else n ∗ fac(n− 1) fi;

end

produces the stream of factorials of positive differences of the numbers in its input stream. A näıve
implementation would try to generate the stream of all factorials of differences and then throw
away those corresponding to negative differences. This näıve approach would fail because the
diffac ‘blows up’ (fails to terminate) whenever its input decreases from one value to the next. It
is not even enough to ‘prefilter’ the input to diffac; the expression diffac(n whenever n < next n)
would give completely different results.

One solution to this problem (adopted by many dataflow languages) is to define it out of
existence by excluding nonstrict operations like whenever. We consider this far too drastic: for
Lucid, it would mean dropping first, next, fby and even if–then–else as well. It would mean
rewriting nearly every program in the book. It would no longer be possible to write filters which
actually filter—which discard some of their input. Instead, we would have to trace the input stream
back to its source and ‘hack’ its generator so that the unwanted values are never produced. This
places an enormous burden on the programmer and is completely alien to the modular approach
that dataflow ought to offer.

This second difficulty is truly unavoidable. We must therefore conclude that näıve pipeline
dataflow (whether simulated with actors or otherwise) is not suitable as a basis for a completely
general Lucid implementation. We need some more general form of dataflow in which it is not
required that all the values of a stream are actually computed, and in strict chronological order.

The simplest solution is to expand the model of dataflow slightly by allowing processes to send
some control information upstream. For example, if a filter realizes it does not need the next value
due to appear, it can send a ‘kill token’ (“lethon”) upstream, which cancels the computation of
the value in question. Pilgram’s compiling algorithm works this way. In addition to lethons he
has other tokens carrying other messages. His main problem is handling the case in which a single
producer filter is supplying copies of its output to a number of consumers with different patterns
of needs. Nevertheless Pilgram’s approach is capable of compiling correctly a surprisingly large
class of programs.

Unfortunately, there are still many programs that cannot be compiled correctly. The problem
is that even with lethons there is still no sure way for a compiler to know which computations
are necessary. A filter receiving a lethon cannot just suspend all internal computation. It may
have to keep updating some internal values (such as counters) so that they will have the proper
values when output must again be produced. Some input values may be needed to keep the
internal memory ‘ticking over’, and this means that lethons cannot always be propagated upstream.
Other difficulties arise with feedback loops. It seems that there is no entirely correct, completely
reliable implementation which still tries to interpret the Lucid time parameter as in any sense
corresponding to real time.

Fortunately, there is a relatively simple way of implementing Lucid, which is based on the idea
of considering Lucid time as a formal property of a value, that has nothing to do with actual
time. This is an implementation by means of a demand-driven interpreter. The idea is that
the operating system demands the value of the program at different ‘times’ 0, 1, 2, 3, etc. To
calculate these values the interpreter evaluates subterms at other times. The demand pattern
for the program itself is entirely ‘conventional’ (in strict chronological order), but the demand
patterns for subterms need not be.
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Consider, for example, the program

y
where

x = 1 fby x + 1;
y = 1 fby y + 2 ∗ x + 1;

end

(whose value is the stream of squares of the positive integers). The first demand would be for
the value at time 0, which in turn would produce a demand for y at time 0, which, by definition
of y, is 1. This then is the value of the program at time 0. Then there would be a demand for
the value at time 1, and hence for the value of y at time 1. This results in a demand for the
value of y + 2 ∗ x + 1 at time 0, which in turn generates demands for y + 2 ∗ x and 1 at time 0.
The former demand results in demands for both y and 2 ∗ x at time 0, and the latter of these
results in demands for 2 and x at time 0. (There is thus a tree of demands, and the demands on
distinct branches of the tree could be made and satisfied simultaneously if the interpreter were
implemented in a multiprocessor environment.) The demands for 2 and 1 are met immediately,
by the numbers 2 and 1, and the value of y at time 0 has already been found to be 1. (We assume
that this value has not been thrown away.) The value of x at time 0 also is 1, by the definition
of x. The value of 2 ∗ x at time 0 is thus found to be 2, and the value of y + 2 ∗ x at time 0 is 3.
Finally, the value of y + 2 ∗ x+ 1 at time 0, which is also the value of y at time 1 and the value of
the program at time 1, is 4.

This example has been very simple, and could in fact have been handled by a compiler quite
easily, but the method of computation used by the interpreter is quite different from the one a
compiler would use, and it can handle the intermittent and anachronistic patterns of needs that
cause difficulties for a compiler.

The demand-driven scheme extends easily to handle programs with user-defined functions as
well. We simply allow the values of variables to depend on a place as well as a time parameter.
The place parameter is a finite sequence of integers which gives the calling sequence which led to
the evaluation of the particular value in question. The place parameters can be very long, but a
simple coding system can be devised so that demands themselves refer only to the simple (small
integer) codes.

The demand-driven scheme just described is, however, completely impractical. The problem is
that computed values are not saved. If these values are demanded again, they must be recomputed.
As a result, even simple algorithms are ridiculously inefficient. Fortunately it is a relatively easy
matter to add memory. Each time a value is computed, it is labeled (with the time and place
parameters) and stored in a big ‘warehouse’. Every time a value of a variable is requested, the
interpreter first checks that the value is not already on hand. The warehouse must therefore act
as an associative store, but this can be easily (and efficiently) simulated with hashing.

This describes the essential features of the Lucid interpreter, written by Calvin Ostrum when
he was an undergraduate student at the University of Waterloo. Earlier, simpler interpreters along
the same lines were written by T. Cargill, M. May and P. Gardin (all of whom were students at
the time).

The main problem with this modified interpreter is that it never forgets anything. The available
memory can get filled up quite rapidly. What is needed is some sort of garbage collection to get
rid of the values of variables that are never going to be needed again. In the current pLucid
interpreter, which is based on Ostrum’s interpreter but has been extended by A. Faustini at the
University of Warwick, this is taken care of by a “retirement-age” garbage-collection scheme. The
value of a variable at a particular time reaches retirement age if it survives more than a certain
number of garbage collections without being referred to. If this happens it will be retired (i.e.,
collected up) at the next garbage collection. The “certain number” is determined dynamically.
The number is decremented after each garbage collection, so that it tends to be no larger than
necessary. However, during evaluation it is incremented every time use is made of a value which
would have been retired at the next collection. This keeps the age large enough so that useful
values are kept around.
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The retirement plan is remarkably effective, but it is still only a heuristic. There is no guarantee
that useful variables will not be retired too soon, or that useless values will not be kept on too long.
Fortunately, the consequences of early or late retirement are not serious. If the retirement ages
are too high, it means only that space is wasted on values which are not needed. If the retirement
ages are too low, it means only that time is wasted in recomputing values. One of the greatest
advantages of the demand-driven scheme is the fact that the storage-management strategy affects
performance but not correctness.

The interpreter is complete (it can handle the whole language), but it is implemented on
a conventional one-processor von Neumann machine (usually a VAX), so it is not very efficient.
Lucid can only realize its full potential when it can be run on a dataflow machine. There are (as we
mentioned in the introduction) a number of dataflow machines planned, and at least one actually
operating (at the University of Manchester). T. Sargeant (1982), at Manchester, has produced a
compiler that compiles Lucid into Manchester machine code, and many programs have been run.

Unfortunately the Manchester dataflow machine is based on data-driven, rather than demand -
driven, dataflow. This means that the flow of demands as well as the memory management must
be simulated (the latter can be quite difficult). The performance is therefore far less than what
is possible in principle. We are now considering possible designs for a demand -driven machine
similar to the Manchester machine but which would work like the interpreter. With a machine
of this type the language (Lucid) and its implementation would finally be perfectly matched. We
have good reason to be optimistic about such a combination.



Chapter 4

Lucid:
Luswim with Nested Iteration

The language Luswim has shown itself to be surprisingly well suited for specifying unconventional,
dataflow or ‘coroutine’ forms of computation (surprising, that is, in view of its simplicity). The
Luswim programmer soon finds out, however, that the language is also surprisingly unsuited for
expressing more conventional iterative algorithms.

Suppose, for example, that we wanted to generalize the moment program in the preceding
chapter to compute arbitrary moments (the n-th moment of a series is the sum of the n-th powers
of its elements). To do this, we need to be able to compute arbitrarily high powers of the values
in the input stream, and not just the squares. Of course, we can add a recursive definition of a
function pow :

pow(x, n) = if n eq 0 then 1 else x ∗ pow(x, n− 1) fi;

so that in general the value of pow(x, n) is the value of x raised to the value of n. On the other
hand, we might prefer to use an iterative algorithm to compute powers. After all, the whole point
of Lucid is to allow iteration. In PASCAL, at least, an iterative version is very easy to write; we
just add the following procedure:

function pow(x : real; n : integer) : real;

var k : integer;

y : real;

begin

y := 1;

for k := 1 to n do

y := y * x;

pow := y

end;

If we try to formulate this algorithm in Luswim, however, we run into surprising difficulties. To
understand the nature of these difficulties let us consider a very simplified form of the problem of
computing powers, one which can be done in Luswim, and then try to generalize the solution. The
simplest form is one in which we need to compute the power for particular values of x and n—say 3
and 8, respectively. We need to write a program which computes 38. (Our Luswim program will
actually produce this value over and over.)

This problem is particularly simple in PASCAL. We just use a while loop that accumulates
products of 3 until it has 8 of them.

program pow(output);

var p : real;

69
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i : integer;

begin

i := 0;

p := 1;

while i < 8 do

begin

i := i + 1;

p := p * 3

end;

write(p)

end.

The while loop in the program looks like some we have already considered, which we have trans-
lated into Luswim without any particular problem. There is, however, one crucial difference:
the PASCAL loop will eventually halt. It is not in any sense meant to go on forever; it is not
continuously operating.

The Luswim equations

i = 0 fby i + 1;
p = 3 fby 3 ∗ p;

imitate the loop of the PASCAL program. But they specify an infinite, unending computation,
whereas the PASCAL program specifies only eight values for i and p. Of course, we can use the
pLucid eod object to limit the output of a program to only one value. But which value? The
program first p fby eod outputs only the first value of p, and the program first next p fby eod

outputs only the second. Obviously we could continue in this way and write a program which
produces only the eighth (time 9) value of p, but it does not generalize very well. We need an
operation which can ‘extract’ single values of a stream, values which may take arbitrarily long to
produce.

4.1 The Operation asa

Luswim already has a way of selecting certain desired values from a stream—the operation
whenever (abbreviated wvr) introduced in the last chapter. In general y wvr q is the sequence of
all values of y for which the corresponding value of q is true. In our particular case, p wvr i eq 8
gives us those values of p which correspond to a value of 8 for i. In general, there may be infinitely
many values of y corresponding to a value of true for the ‘test’ q; and if not, y wvr q will eventually
have ⊥ as its value. In either case, if we are simulating a while loop whose halting condition is q,
we are interested only in the first of these values, i.e., the value which y has when q is first true.
This value, of course, is just first(y wvr q); in the example under discussion,

first(p wvr i eq 8).

Our complete program is therefore

first(p wvr i eq 8) fby eod

where

i = 0 fby i + 1;
p = 1 fby 3 ∗ p;

end

We can make the notation even more suggestive by introducing a new infix operator assoonas
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(abbreviated as asa), with y asa q defined to be first(y wvr q). Our program then becomes

(p asa i eq 8) fby eod

where

i = 0 fby i + 1;
p = 1 fby 3 ∗ p;

end

The value of y asa q is the value y has when q is true for the first time.
It should be clear that a ‘simple’ PASCAL while loop of the form

V0 := · · ·
V1 := · · ·
· · ·
while C do

begin

V0 := · · ·
V1 := · · ·
· · ·

end

can be simulated with an expression of the form

· · · asa C fby eod

where

V0 = · · · fby · · · ;
V1 = · · · fby · · · ;
· · ·

end

Our problems begin, however, when we try to generalize the program to give a continuously
operating one with two input variables x and n and with output the n-th power of x. This is easy
enough in PASCAL:

program pow(output);

var x, p : real;

n, i : integer;

begin

while true do

begin

read(x, n);

i := 0;

p := 1;

while i < n do

begin

i := i + 1;

p := p * x

end;

write(p)

end

end.

We might rush to the terminal and type

p asa i eq n
where

p = 1 fby x ∗ p;
i = 0 fby i + 1;

end
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but the results will be unexpected, to say the least. (The program is intended to run continuously
and therefore should not produce eod .) For example, if the first input values of x and n are 2
and 5, the program will not output anything (it will be waiting for more input)! If the next values
are 3 and 8, still nothing is produced! Finally, if 7 and 2 are input, the program finally produces
a number 6! The next output is also 6, regardless of the next input, as are all other outputs.

The cause of this confusing behavior is not hard to find. Our iterative power algorithm works
only if x and n are constant (do not change with time). If x is constant the equation p = 1 fby x∗p
generates powers of x; but if x itself is changing, p accumulates the running product of the values
of x. Similarly, if n is constant in time then p asa i eq n does yield the n-th value of p; but if n
itself is changing, it yields the value which p has when n and i first happen to coincide. The asa

is chasing a moving target!

4.2 Nesting in HyperIswim

We can perhaps understand the problem a little better if we consider the following program
in HyperpIswim (where we can define infinite lists). In the program the iterative algorithm to
compute the power is simulated with infinite lists.

Aux (x, n)
where

Aux (y,m) = Asa(p, c) :: Aux
(
tl(y), tl(m)

)
where

x = hd(y);
n = hd(m);
p = 1 :: prod(x, p);
i = 0 :: add(1, i);
c = equ(n, i);

end

where

prod(k, l) = k ∗ hd(l) :: prod
(
k, tl(l)

)
;

add(k, l) = k + hd(l) :: add
(
k, tl(l)

)
;

equ(k, l) = k eq hd(l) :: equ
(
k, tl(l)

)
;

end

Asa(y, q) = if hd(q) then hd(y) else Asa
(
tl(y), tl(q)

)
fi;

end

The inputs to this program, namely the values of the input variables x and n, are intended to
be infinite lists—lists of all the individual numbers input. For example, if (as we have already
supposed) the first three individual values of x are 2, 3 and 7, and those of n are 7, 2 and 8, then
the input values of x and n are infinite lists of the form [2 3 7 · · · ] and [5 8 2 · · · ], respectively.

This program does in fact work; with input as indicated, its output is an infinite list of the
form [32 6561 49 · · · ]. It works even though the body of the inner while is just a translation
into the clumsy HyperpIswim notation of the Luswim program (the variable c corresponds to the
expression i eq n). The difference between the two programs is nevertheless not hard to see. The
HyperpIswim program uses the auxiliary function Aux to ‘run’ through the input. Each pair of
numbers input is passed into the where clause and the desired result is extracted with the Asa
function. Each of these pairs of numbers generates a different ‘invocation’ of the where body, and
in each of these invocations the value of (say) p is a different infinite sequence. In other words, each
of the infinitely many pairs of individual inputs determines an entire infinite sequence of values
for p. The entire collection of individual values associated with p is doubly infinite. The Luswim
version fails because its sequences are only singly infinite, i.e., they depend on only a single time
parameter.

The two programs resemble each other because the second uses a little sleight of hand with
variables. The variables x and n are used in two different ways, inside and outside the where
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clause. On the outside, x represents the entire list of all values for x ever input; in other words,
the analog of a Luswim history. Inside, however, it represents (because it has been redefined) a
single individual number—the analog of a Luswim constant. Different invocations of the while

body will correspond to different individual values for the inner x. If we trace the definitions back,
we see that the inner x is the head of y, which is in turn a parameter of Aux . As Aux ‘runs
through’ the outer values of x and n, the different values of y correspond to the result of removing
more and more items from the head of x. Thus the value of the expression hd(y) runs through
the components of the list denoted by the outer x. In other words, the inner x ‘runs through’
the components of the outer x one at a time. In each invocation of the where body the pair of
values of x and n represent a ‘snapshot’ of the activity recorded by the outer values—the result
of ‘freezing’ the outer activity at a given point in time.

We can make this clearer by using different variables for the inner, ‘frozen’ values of x and n.
If we use X and N for these values, the program becomes

Aux (x, n)
where

Aux (y,m) = Asa(p, c) :: Aux
(
tl(y), tl(m)

)
where

X = hd(y);
N = hd(m);
p = 1 :: prod(X, p);
i = 0 :: add(1, i);
c = equ(N, i);

end

where

prod(k, l) = k ∗ hd(l) :: prod
(
k, tl(l)

)
;

add(k, l) = k + hd(l) :: add
(
k, tl(l)

)
;

equ(k, l) = k eq hd(l) :: equ
(
k, tl(l)

)
;

end

Asa(y, q) = if hd(q) then hd(y) else Asa
(
tl(y), tl(q)

)
fi;

end

Now a single, infinite value of x corresponds to infinitely many ordinary values of X—and N bears
the same relation to n. The variables X and N therefore ‘run through’ the components of the
corresponding lists. For each of these values, infinite lists p, i and c are created, and thus the
effect of nested iteration is obtained.

Clearly what is missing from Luswim is nested iteration—the ability to define whole families
of subcomputations, one for each step in the ‘main’ computation. HyperpIswim has it, but only in
a crude and indirect form—indeed, the reader may be confused or skeptical about our operational
interpretation outlined above. Luswim has nesting (with its where clause) but it is nesting of
scope only. We cannot imitate the HyperpIswim program in Luswim—in Luswim everything is a
sequence, and there are no ‘scalars’.

The definitions of a where clause define single sequences, not families of histories, one for each
‘timepoint’ in the outer computation. In operational terms, we saw that the body of a Luswim
where clause defines a single iterative computation which proceeds in parallel with the computa-
tions on the ‘outside’—not a family of subcomputations, each of which runs to completion while
the main computation is held in a state of suspended animation. In the imperative languages,
nested iteration is supplied almost automatically. The values of variables remain unchanged unless
they are forced to change by the execution of an assignment statement. Therefore, to get the nest-
ing effect it is enough simply to stop doing things to the variables in the main computation while
the subcomputation is being performed. In Luswim, on the other hand, the values of variables are
normally in the process of changing, not of remaining constant. The different computations which
produce the values of the variables proceed simultaneously and (except for data dependencies)
independently, without the intervention of some central control.
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4.3 Nesting with whenever and upon

There is in fact one way to achieve nesting in Luswim. We can use upon to achieve a temporary
suspension of the activities of the main computation, and then use whenever to extract the results
of subcomputations which proceed during the suspension of the main computation. Here is the
power program using whenever and upon in this way.

p whenever c
where

N = n upon c;
X = x upon c;
p = 1 fby if c then 1 else X ∗ p fi;
i = 0 fby if c then 0 else i + 1 fi;
c = i eq N ;

end

The variable p accumulates powers of the current suspended value X of x, and is reset back to 1
each time the required power is obtained. The operation whenever is used to extract these desired
final values of p.

This approach is not, however, really suitable. For one thing, it is very inconvenient: the condi-
tion must be mentioned several times, and new ‘inner’ names must be devised for global variables.
For another, the different subcomputations are not really independent. If one of the iterations
‘blows up’—i.e., the halt condition never becomes true—then succeeding subcomputations never
get done. This is true even if the particular subcomputation is computing a value which in the
end is not needed. Finally, this method works only if the subcomputations are producing a finite
object—and so take only a finite number of steps.

4.4 Going beyond Luswim

In a sense, the whenever/upon approach is only a particular implementation of a certain, limited
kind of nesting. Nesting is important enough that it should be available in as general a form as
possible, and in an abstract (implementation independent) a form as possible. It does not seem
to be possible to solve all these problems conveniently and remain within the Iswim family. It
is necessary to extend Luswim to a new language, Lucid (i.e., full Lucid), which is not simply a
member of the Iswim family.

One way to do this is to extend the notion of sequence to allow the values of a sequence to
depend on more than one time parameter. This was the approach which was originally adopted, as
in Ashcroft and Wadge (1977). Fortunately, there is a much simpler way to extend Luswim, more
in accord with the operational view of suspending a main computation while a subcomputation
proceeds.

Consider again the problem with the attempted Luswim power program. The program works,
provided that the values of the globals of the clause (x and n) are constant (in time). Given
nonconstant values for x and n, the value which we would like the clause to have at time t is z
where 〈z, z, z, . . .〉 is the value the clause would have if x and n had the values

〈xt, xt, xt, . . .〉 and 〈nt, nt, nt, . . .〉

with x and n being the values of x and n, respectively). For example, suppose again that x and n
are of the form

〈2, 3, 7, . . .〉 and 〈5, 2, 2, . . .〉

respectively. If x and n had the values 〈2, 2, 2, . . .〉 and 〈5, 5, 5, . . .〉, then the clause would have
the value 〈32, 32, 32, . . .〉; if x and n had the values 〈3, 3, 3, . . .〉 and 〈2, 2, 2, . . .〉, then the clause
would have the value 〈9, 9, 9, . . .〉; and if x and n had the values 〈7, 7, 7, . . .〉 and 〈2, 2, 2, . . .〉,
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then the clause would have the value 〈49, 49, 49, . . .〉. When we put together the results of these
‘hypothetical’ subcomputations, the resulting value for the clause is 〈39, 9, 49, . . .〉. This is in fact
the value we really want: 32 is 25, 9 is 32, and 49 is 72. Of course, this is not the value that
the clause has as a Luswim program—we have already seen that its Luswim value is the sequence
〈6, 6, 6, . . .〉.

It would not be hard to change the semantics of Luswim so that clauses would give us the
desired nesting effect. At present the value of the clause

S
where

V0 = E0;
V1 = E1;
· · ·

end

(let us assume for the sake of simplicity that all variables are nullaries) in an interpretation I is
the value of S in the interpretation I ′, which is the least satisfying the definitions in the body and
agreeing with I except possibly for the values of some of the locals. As a first step, notice that we
can reword this definition so that it gives an ‘instant-by-instant’ specification of the value of the
clause, as follows:

The value of the clause at time t is the value of S at time t in the interpretation I ′t,
which is the least satisfying the body and differing from I at most in the values assigned
to the locals.

The new form of the definition is equivalent to the standard one, but comes closer to expressing
the idea that there should be an entire subcomputation (and an entire inner interpretation) for
each step in the main computation. There is, of course, no nesting obtained, and the reason is
clear: the ‘inner’ interpretations I ′t are all the same.

It is not hard, however, to see how the reformulated definition can be changed to yield a
nesting effect. We simply require that the globals of the clause be given constant values in each
inner interpretation; in particular, that the value of a global V in the inner interpretation I ′t
be the constant sequence 〈vt, vt, vt, . . .〉, where 〈v0, v1, v2, . . .〉 is the value of V in the ‘main’
interpretation I. It should be apparent from what has been said earlier that this will in fact
give the effect of the subcomputations being run while the main computation is ‘suspended’. In
particular, our exponential program will now work.

The change in the semantics of Luswim does indeed give us a language in which nesting can
be expressed. The modifications have the effect of forcing the value of a clause to be a pointwise
function of the values of its globals. This modified Luswim, however, would no longer be a member
of the Iswim family, because we tampered with the ‘generic’ semantics of Iswim’s where clause.
In particular, some definitions of globals (such as H = next G) true outside a clause are no longer
true inside—occurrences of a variable inside denote different things than occurrences outside.
This modified Luswim would be much closer to a language like PASCAL, where nesting is almost
automatic, with the restriction that inside a block no assignments to globals are allowed.

There is, however, one glaring flaw with this solution to the nesting problem—we lose most of
Luswim’s dataflow capabilities. In modified Luswim, user-defined functions can still be thought
of as filters, but only as filters without memory (because the functions are guaranteed to be
pointwise). Our running average program, for example, would no longer work: the value of the
clause

next(s/n)
where

n = 0 fby n + 1;
s = 0 fby s + a;

end
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is that of the variable a. In each subcomputation specified by the body, the value of a will be
‘suspended’ at its outer value. This means that the value of s inside the clause is that of a ∗ n,
and so the value of next(s/n) inside the clause is that of a itself.

It should be apparent, then, that the two different semantics for where clauses are incompat-
ible. In Luswim the ‘main’ computations proceed in parallel with the computation specified by
the body, while in the new language the main computation is suspended. We obviously cannot
have it both ways at once; nevertheless, it is hard to choose between these two notions of ‘sub-
computation’. From the few examples we have seen already, it seems that both notions can, in
different circumstances, be appropriate and useful. We could always produce two separate lan-
guages, one for the ‘plumbing’ style of programming and one for the more conventional approach.
But what would we do when faced with a problem in which both forms of subcomputation were
suggested? The example given at the beginning of the book is a case in point. In computing
a running root-mean-square of a stream of numbers, we used one filter (with memory) which
accumulated averages, and another pointwise filter which extracted square roots using a nested
subcomputation.

Our (i.e., Lucid’s) solution to the problem of mixing the two notions of subcomputation has
evolved considerably. The first approach was to provide two different versions of where clause in
the same language. One of these was the where of modified Luswim in which the values of globals
are ‘frozen’ , while the other one was the ordinary where which imports its values ‘fresh’. Later,
we divided the collection of program variables into two sets (boldface and lightface). In this second
approach there was only one where clause, but lightface variables were always frozen and boldface
were always fresh. This proved simple in theory but confusing and unworkable in practice.

In Ostrum’s (1981) Luthid interpreter, the programmer gave declarations of those variables
to be imported fresh (nglobal) and frozen (eglobal). This was a great improvement, but still
not completely satisfactory (even though the nglobal list is easily dispensed with). Programmers
found it very confusing that a variable could mean one thing inside and another outside a clause.
It is not in the spirit of functional programming; it corresponds to the situation in an imperative
language, where globals retain their initial values if no assignments are made to them.

4.5 The is current Declaration

In this book we present our most recent solution, one which we hope resolves these difficulties.
The Lucid clause in its latest form allows the programmer to give new names to the frozen values
of chosen variables (or, more generally, expressions). The new names are used inside the clause
to refer to the value of the specified expression at the suspended global time; in other words, to
the current ‘outer’ value of the expression. Any variable can be used to denote the frozen value,
even the same variable whose frozen value is being named. Often we will use a variable in upper
case (such as N) to remind us of the fact that the value being denoted is ‘really’ just a datum
(actually a constant stream) and not an arbitrary stream.

In general the value of the clause

H
where

V0 is current E0

V1 is current E1

· · ·
L0 = D0

L1 = D1

· · ·
end

at time t is ht, where h is the value of H in interpretation I ′′t ; and I ′′t embodies the least solution of
the equations in the body, which differs from the interpretation I ′t at most in the values assigned
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to the locals of the clause; and I ′t differs from I only in that the value of Vi in I ′t is 〈vt, vt, vt, . . .〉,
v being the value of V in I.

Here is the power program in Lucid:

p asa i eq N
where

N is current n;
X is current x;
i = 0 fby i + 1;
p = 1 fby X ∗ p;

end

The programmer can imagine that the clause is evaluated over and over, each evaluation giving
rise to a separate subcomputation specified by the equations in the body. At each time t the
inner computation is started from scratch—the values of i and p are generated by induction
from the initial values 0 and 1. The values of X and N remain constant during the course of
a given subcomputation, but may change from one subcomputation to the next. During the
subcomputation that takes place at outer time t (or rather between outer times t and t + 1),
X and N have the ‘outer’ values of x and n, respectively; i.e., the values of x and n at time t.
The programmer can imagine that each inner computation proceeds until the desired value is
extracted, and that all the intermediate results are then discarded, so that all trace of the activity
is removed. The next ‘invocation’ of the clause can be thought of as starting again from scratch.
If there were no freezing, there would be no point in repeatedly abandoning one subcomputation
and restarting the next from scratch. Without freezing, all the different subcomputations would
be identical, and so nothing would be gained by restarting new ones at the beginning.

Of course the subcomputation specified by a clause with is current declarations is not re-
stricted to be a Lucid version of a simple while loop. The subcomputation in the body could
itself use filters, defined with clauses not containing is current declarations. For example, we
can rewrite the above program as

prod
(
if odd(k) then p else 1 fi

)
asa k eq 0

where

N is current n;
X is current x;
p = X fby p ∗ p;
k = N fby k div 2;
prod(c) = y
where

y = 1 fby y ∗ c;
end

odd(i) = i mod 2 eq 1;
end

(This program computes powers by the more efficient method of repeated squaring.) The filter
prod accumulates running products. In each computation we can imagine a prod filter being set
up, values being fed into it and their product being accumulated. Once the required value is
obtained, however, the filter is discarded. The filters in a nested computation like the above are
not required to run forever; the whole dataflow network is dismantled after each subcomputation
and is rebuilt anew when the next subcomputation begins.

Naturally, what we have described is only an imaginary ‘virtual’ implementation. It is a
convenient way of thinking about computation but not necessarily a sensible way for an actual
machine to carry them out. A real implementation, even one based on pipeline dataflow, might
handle nesting very differently. It might; for example, keep the network specified by the body of
the clause intact from one subcomputation to the next. Before the start of a new subcomputation
it would clean up all the datons left sitting on arcs and reinitialize the internal states of all the
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filters. The pLucid interpreter uses yet another approach. It does not even try to simulate the
nesting effect. Instead, it tags demands and results with a whole sequence of time parameters.
One parameter keeps track of ‘local’ time, another time in the enclosing loop, a third time in the
next enclosing loop and so on.

Obviously, a clause specifying a subcomputation can itself contain clauses which specify sub-
computations. In such cases it is not hard to see that the effect is roughly what happens in imper-
ative languages: on entering the subsubcomputation both the subcomputation and the enclosing
main computation are essentially suspended. When the value computed by the subsubcomputa-
tion is obtained, the subsubcomputation is ‘exited’ and the subcomputation reactivated. Here,
for example, is a program which computes the base-ten logarithm of the components of an input
stream of rational numbers between 1 and 10.

midlog asa abs(mid −X) < 0.0001
where

X is current X;
low = 1 fby if X < mid then low else mid fi;
hi = 10 fby if X < mid then mid else hi fi;
mid = a asa err < 0.0001
where

S is current low ∗ hi ;
a = S/2 fby (a + S/a)/2;
err = abs(S − a ∗ a);

end

lowlog = 0 fby if X < mid then lowlog else midlog fi;
hilog = 1 fby if X < mid then midlog else hilog fi;
midlog = (lowlog + hilog)/2;

end

In the subcomputation (performed once for every input value) a sequence of upper and lower
bounds (hilog and lowlog) to the logarithm of the current value X of x is generated, together with
corresponding lower and upper bounds low and hi on X. On each step of the subcomputation,
X is compared with the geometric mean mid of hi and low (i.e., the square root of their product)
to determine in which of the subintervals [low ,mid ] or [mid , hi ] it lies. The new bounding interval
is either [low ,mid ] (if X < mid) or else [mid , hi ]. At the same time, the logarithm midlog of mid
is computed, and the new pair of logarithms corresponding to the new values of low and hi is
either lowlog and midlog or midlog and hilog , as appropriate. Since mid is the geometric mean
of low and hi , the logarithm of mid must be the the arithmetic mean (i.e., the average) of the
logarithms of low and hi .

The square root of low ∗ hi is computed, by the nested subsubcomputation, using our näıve
form of Newton’s method.

Each input value of x, i.e., each of the values taken on by X, gives rise, in the nested subcom-
putation, to a whole series of values for hi , low , mid , hilog , lowlog and midlog . If the particular
value of X is 8, for example, then the pair (low , hi) of bounds will take on the values

(1, 10), (3.162, 10), (3.162, 5.623), . . . ,

mid will take on the values

3.162, 5.623, 4.217, . . .

and midlog will take on the values 0.5, 0.75, 0.625, . . . .
Now on each step of this nested subcomputation we have an entire nested subsubcomputation

which proceeds by generating better and better approximations to the square root of the current
value of low ∗hi (this value is called S in the subsubloop). On the third step of the nested subcom-
putation (for example) the variable A, which is defined ‘two levels deep’ (so to speak), will take on
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the sequence of values 8.891, 5.446, 4.356, 4.219, . . . as it approaches the square root of 17.783, the
product of the current values (3.162 and 5.623) of low and hi . When this approximation becomes
accurate enough, the value is extracted and the whole nested subsubcomputation is ‘aborted’.

Of course on the next step of the subcomputation another invocation of the subsubcomputation
is started again from scratch until it, too, has supplied its value and been scrapped. This process
continues until the value of mid is close enough to that of X; then the entire subcomputation is
discontinued, with the desired value of midlog being saved from the wreckage. At this point we
‘surface’ to the main computation with the approximation to the log of the current value of x.
Once this has been handed over (as the current output), we take the next value of x and start up
another invocation of the subcomputation. On each step of this new subcomputation we start up
a subsubcomputation, run it until the desired value is obtained, and so on.

If we wanted to comprehend the entire history of the computation as a whole, we could proceed
as follows. The history of a variable on the outside is determined by outer time alone, and so is
represented by a sequence in the usual way. A variable defined one level deep, however, varies
with both outer and inner time and its history is therefore essentially a doubly infinite matrix. In
the same way, the entire history of a variable defined three levels deep would be a triply infinite
cube (a three-dimensional array of values).

We do not, however, recommend this mode of thinking. Clearly nesting can proceed to any
desired depth, and can be arbitrarily mixed up with nonnested (parallel, coroutine style) subcom-
putations. The resulting computation can become very elaborate. It is much better to think locally
and modularly, concentrating on only one level at a time. The computations in the enclosing level
are thought of as suspended while the ‘current’ subcomputation proceeds, and subsubcomputa-
tions are thought of as taking place ‘instantaneously’. The denotational semantics of Lucid does
not involve higher-dimensional histories and reflects this modular approach to nesting.

4.6 Mixed Clauses

We see, then, that there are two radically different notions of subcomputation: that of parallel
subcomputation (a ‘coroutine’ or filter) and that of nested subcomputation. It is only natural
to speculate that these two are only two extremes (‘yin’ and ‘yang’, so to speak), and that there
may be other concepts of subcomputation intermediate between the two. This is in fact the case.
There is an apparently endless variety of forms of subcomputation, and some of these will be
examined in a later chapter. Even in Lucid itself a restricted mixture of the two extremes can be
made available, simply by allowing some values to be imported ‘frozen’ while others are imported
‘fresh’. In Lucid there is no requirement that the globals of a clause be treated uniformly, i.e.,
that they all be frozen or that they all be fresh.

Here is an example of a ‘mixed’ clause; the body of the clause uses both the frozen value of n
and the fresh value of p. If we assume that p is the stream of all prime numbers, the value of

i asa p > N/2
where

N is current n;
isdiv = (N mod p) eq 0;
i = 0 fby if isdiv then i + 1 else i fi;

end

at time t will be the number of prime divisors of the value of n at time t.
The denotational semantics is simple enough but the operational significance of ‘mixed’ freezing

is not readily apparent. If ‘nesting’ and ‘parallel’ are the two opposite modes of subcomputations,
how can they be reconciled?

There are in fact two complementary ways of viewing such mixed clauses, depending on whether
the subcomputations they define are ‘basically’ nested or ‘basically’ running in parallel.

The first point of view is to regard such clauses as being primarily nested subcomputations in
which certain variables (those not defined by an is current declaration) are restarted from the
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beginning at the commencement of each new subcomputation.
The example given above is best understood in this way. We imagine that on each step of the

main computation we take the current value of n (which we call N), enter the subcomputation,
and start generating the values of p (i.e., the primes) from the beginning. For each of the values
of p so obtained we test whether or not the value divides N . If it does, the local variable i is
incremented by 1, otherwise left unchanged. The value extracted from the subcomputation is the
value i has when the p is first greater than N/2.

The clause is intended to be used in a context in which the value of the global p is the stream
〈2, 3, 5, 7, 9, 11, . . .〉 of all the primes. In these circumstances the clause is calculating the number
of distinct primes which divide the current value of n; in other words, the value of the clause at
time t is the number of distinct prime divisors of the value of n at time t. If, for example, the
value of n is

〈12, 8, 15, 60, 17, . . .〉

then that of the clause must be

〈2, 1, 2, 3, 1, . . .〉

In the example clause above the ‘halting condition’ (p > N/2) was given explicitly, as the
second argument of the asa. In the semantics of clauses with freezing, however, there is a ‘built-in’
halting condition—namely, the time at which the inner time has ‘caught up’ with the outer time.
The value of the clause is the value which the subject expression has at this time. This means
that the values can be extracted from a subcomputation without using the operation asa. This
is appropriate when the algorithm uses exactly all values of the restarted expressions up to the
current time. This is often what is desired.

Here, for example, is a program which computes the second moment of the values of i and i’s
next value; in other words, the value of the clause at time t is the root mean square of the difference
between the next value of i and the earlier ones.

sqrt
(
next(s/n)

)
where

J is current next i;
s = 0 fby s + (i− J) ∗ (i− J);
n = 0 fby n + 1;

end

If the value of i is of the form 〈3, 5, 7, 4, . . .〉, then that of the clause is of the form

〈2, 3.162, 1.915, . . .〉

The value at time 2 (i.e., 1.915) is
√

((3− 4)2 + (5− 4)2 + (7− 4)2)/3.
We can understand this clause operationally as ‘basically’ a nested subcomputation inside

which the values of i are regenerated from the beginning each time. As these values are generated,
the sum of the squares of the differences between the regenerated earlier values and the frozen
outer value (J) is accumulated. The loop ‘halts’ when inner time coincides with outer time and
the required average is extracted.

The other way of viewing a mixed clause is to consider it as a family of Luswim clauses, with
the parameters of the family being the values of the variables which are specified as current values
of expressions. The following clause, for example,

next s/n
where

K is current k;
n = 0 fby n + 1;
s = 0 fby s + pow(p,K);

end
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has as its value at time t the (k at time t)-th moment of the values of x up to time t. We can think
of the variable k as denoting the parameter, and each individual numeric value of k determines a
conventional Luswim clause. If k has been defined (outside the clause) to be constantly 3, then
the clause itself is equivalent the ordinary Luswim clause

next s/n
where

n = 0 fby n + 1;
s = 0 fby s + x ** 3;

end

which computes the running third moment. Similarly, in an environment in which k is constantly 2,
the clause in question is equivalent to the Luswim clause

next s/n
where

n = 0 fby n + 1;
s = 0 fby s + x ** 2;

end

which computes the running second moment of x. In an environment in which the value of n
changes irregularly with time between 2 and 3, the clause can be interpreted as sampling the
appropriate outputs of two different simultaneously running ‘coroutines’ defined by the two clauses
above, one computing the second moment and the other the third. On each time step the mixed
clause effectively yields the corresponding output of one of the two ‘coroutines’ and discards the
output of the other.

The same interpretation can, of course, also be applied to user-defined functions which are
defined using clauses with mixed nesting. For example, given the definition

mom2 (x,m) = next s/n
where

M is current m;
s = 0 fby s + (x−M) ∗ (x−M);
n = 0 fby n + 1;

end

then the value of mom2 (a, i) at time t is the second moment of the first t + 1 values of a about
the value of i at time t. We can regard mom2 as ‘basically’ an ordinary Luswim function, i.e.,
a filter, but with a parameter m. Thus mom2 (x, 0) is the result of running x through a running
sum-of-squares filter. If i is varying in time with values in the range 1 to 4, for example, we can
think of mom2 (a, i) as a filter formed by running four simple-moment filters in parallel and, at
each time step, selecting (according to the value of i) which of the individual outputs to pass on
and which to discard.

It is possible, of course, to apply sometimes the one operational view and sometimes the other
to the same object. The above Lucid function, for example, could also be understood as defining
a nested subcomputation in which the first parameter is restarted. From this point of view the
evaluation of mom2 (a, i) at time t involves taking the value of i at time t and then entering the
nested subcomputation, regenerating the values of a, then exiting with the required moment. We
could think of mom2 as basically a conventional pointwise function which takes ‘all of’ a as its
first argument. This view is probably more appropriate when understanding an expression like
mom2 (a, avg(a)), which produces a running variance of a.

We would certainly sympathize with the reader who feels that mixed freezing is obscure and
complicated, and who is skeptical of its usefulness. Earlier versions of Lucid did not allow mixed
freezing, and even when it was made possible we felt for a long time that mixed loops were bizarre
constructs not worth the trouble of outlawing. Experience, however, seems to indicate that it is less
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strange and more useful than would appear at first sight. Mixed clauses can appear spontaneously
in supposedly ordinary programs, usually when the programmer wants to pass a whole stream of
values (such as the primes) to a subloop. Mixed nesting may prove to be a powerful programming
technique; mixing will also be discussed in a later chapter.



Chapter 5

Programming in Lucid

In the preceding chapters we have presented the basic ‘tools’ in the Lucid programmer’s kit. The
reader should now have some knowledge of these basic techniques and concepts—filters, nesting
and so on. The knowledge presented so far, however, is in a sense ‘tactical.’ The reader may be
wondering about strategy—how does one plan out a Lucid program in the first place? In other
words, what methodology should the Lucid programmer use?

Of course, we could adopt a sort of nonprocedural Cowboy attitude. We could claim that
Lucid is such a good language, that its tools are so powerful, that you do not need strategy. This
attitude is not completely unfounded. Programs in Lucid (and in nonprocedural languages in
general) tend to be noticeably simpler, more elegant, and above all shorter than corresponding
programs in the competing imperative languages.

We cannot stop programmers from using the language in any way they want, but as for ourselves
we think that programming strategy is all-important—no amount of cleverness or powerful tools
can compensate for a bad strategy. It is true, though, that a powerful language can reduce the size
of problems so that the Cowboys can take on bigger tasks than ever before, while relying only on
their wits. Nevertheless, even the toughest Cowboy will eventually be ‘Dry Gulched’ by a really
nasty problem, and having powerful tools only postpones the day of reckoning.

The most important strategy in any language is modularity: ‘encapsulating’ parts of a pro-
gram that perform certain tasks, then using these parts as ‘black boxes’. In using this approach
each ‘module’ should have a relatively simple function or role which can be understood from the
outside—knowing what it does but not how. The modular approach allows a programmer to break
a large problem down in to smaller ones. In Lucid (as in Iswim and most other functional lan-
guages) the module is the function. The user defines a function in terms of a body (the expression
on the right-hand side of the definition) but can use it without reference to this body.

In Lucid (as in Iswim but not in LISP) functions can be written in terms of other functions,
with the definitions of the subfunctions ‘hidden’ within the main definition (inside a where clause).
This allows the programmer to structure the program in a hierarchy (or tree) of modules; the main
program being a small module using a few submodules, each of these in turn are simple modules
using other subsubmodules. Finally, at the bottom of the tree are found modules which use only
presupplied data and operations. The modular or hierarchical approach allows the programmer
to simplify the design problem by reducing the solution of a large problem to that of solving a
large number of small problems.

There is general agreement that the hierarchical approach is very effective. There is, however,
some debate as to whether modules should be developed top down (‘fleshing out a skeleton’) or
bottom up (building up more and more powerful tools). The best approach is to use the bottom-up
method (tool building) as a long-range strategy, but to use the top-down approach in constructing
one particular program. Lucid is not particularly committed to either the top-down or bottom-up
approach. However, in a dataflow language it is much easier to fit together modules developed
bottom up because of the narrowness of the interface between modules.

The modularity principle does not, however, by itself constitute a methodology. Since it can
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be used in almost any high-level language, including imperative ones like PASCAL, the advice
to “be modular” says nothing about how Lucid differs from imperative languages. The real
question is how to use effectively the tools peculiar to Lucid. Modularity breaks a problem into
small subproblems; but how are each of these to be solved? How are modules broken down into
submodules, and how do they interact with each other? These are the crucial questions.

The real difference between Lucid and imperative languages is the way in which the problem and
its solution (the program) are broken up into modules. In imperative languages the basic concepts
are “storage” and “command”. Modules therefore represent commands to change the store, and
the hierarchical approach means expressing complicated commands in terms of simpler ones. In
Lucid, the basic concepts are those of “stream” and “filter”. A module in Lucid is therefore a
filter, and the hierarchical approach involves building up complicated filters by ‘plumbing together’
simpler ones.

The languages Lucid and PASCAL are, therefore, not just different ways of saying the same
thing; they are different ways of saying different things. Lucid and PASCAL are based on different
forms of computation, i.e., on different notions of what constitutes an algorithm. There is, of
course, some overlap. Conventional iteration can (as we saw) be expressed in Lucid; and dataflow
can be expressed in PASCAL (although ironically FORTRAN, with its COMMON blocks, is better
suited). Nevertheless PASCAL and Lucid programs normally represent two very different solutions
to the same problem.

The difference can be summarized as follows: the PASCAL programmer’s algorithm could be
‘drawn’ as a control flow chart, while the Lucid programmer’s algorithm could be drawn as a data
flow chart.

The best way to convey the programming methodology appropriate for Lucid is to present a
few example problems and their solutions (in pLucid).

5.1 Hamming’s Problem, a Simple Dataflow Example

The first problem which we will consider is that of producing the stream of all numbers of the
form 2I3J5K in increasing order, and without repetitions. This stream should therefore begin

1, 2, 3, 5, 6, 8, 9, 10, 12, 15, 16, 18, . . .

[this problem is discussed in Dijkstra (1976), where he attributes it to R. Hamming]. The problem
is easy enough to state, but for the imperative programmer it is not at all obvious how to proceed.
In fact, the program as stated is extremely difficult to do in PASCAL because we have demanded
all the numbers. But even if we simplify it and demand (say) only the first thousand, there is
still no self-evident solution. The average undergraduate would probably use three nested loops
to generate an array filled with the ‘Hamming numbers’, but unordered and with numbers outside
the required range. The näıve program would then sort this array and print it out without
duplications. Of course, an experienced programmer could do much better, but a good program
is difficult to write (sizes of arrays have to be worked out) and can be quite complex.

The Lucid programmer could always ‘transcribe’ the PASCAL solutions, but in this case (as
in many others) it would be a bad mistake. There is a very easy dataflow solution to the problem,
and the solution can be expressed naturally and elegantly in Lucid.

The dataflow solution (which we learned from Gilles Kahn) is based on the following observa-
tion: if h is the desired stream, then the streams 2 ∗ h, 3 ∗ h and 5 ∗ h (the streams formed by
multiplying the components of h by 2, 3 and 5, respectively) are substreams of h. Furthermore,
any of the values of h other than 1 are values of at least one of the three substreams. In other
words, the values of the stream h are 1 followed by the result of merging the streams 2 ∗ h, 3 ∗ h
and 5 ∗ h. In Lucid we can express this fact with the equation

h = 1 fby merge
(
merge(2 ∗ h, 3 ∗ h), 5 ∗ h

)
;
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with merge a filter (to be defined) which produces the ordered merge of its two arguments. The
dataflow graph looks like this:

1

merge merge fby// // // //
OO

∗ 5

��

∗ 3

��

∗ 2

It is not hard to see that it actually works. The fby node ‘primes the pump’ with the number 1.
This number is sent on as the first output, but a copy is also sent up and back through the three
‘multiplying’ nodes. As a result datons representing 2 and 3 arrive at the first (leftmost) merge
node, and the 2 is sent on to the second merge node. At the other input of this second merge
node, a 5 is waiting; the 2 is sent on, one copy proceeds as the second number output, while the
other passes through the feedback loops and appears as a 4, a 6 and a 15, which queue up at the
input arcs of the merge nodes.

To complete our program, all we have to do is find a definition for merge. The following
recursive definition is the one that comes first to mind, especially for programmers who are used
to recursive, LISP-style programming.

merge(X, y) = if first x < first y
then first x fby merge(next x, y)
elsif first y < first x
then first y fby merge(x, next y)
else first y fby merge(next x, next y)
fi;

(Notice that when first x and first y are equal, only one is ‘sent on’; this is to avoid duplications
in the merged result.)

The above definition is correct, but is not really satisfactory. It is not really in the spirit
of Lucid and of dataflow. Lucid certainly allows such definitions, and they do have a dataflow
interpretation, but this interpretation involves a dynamic, expanding dataflow net (with more and
more merge nodes being generated ‘at run time’). A programmer who writes a definition like that
has slipped into the mistake of viewing streams as static objects, like infinite lists. This is a very
bad habit, one which people experienced in ‘functional programming’ can find hard to shake. The
whole point of Lucid is to make it easy and natural to express iteration and dataflow directly,
when appropriate. Recursive definitions, when they are not appropriate, can be cumbersome and
hard to understand. They can also be inefficient on some kinds of dataflow machines and even
on conventional machines. The pLucid interpreter in particular often performs much better with
iterative programs.

There is in fact a straightforward iterative way to merge two streams, one which is familiar
to every applications programmer. To merge x and y you take the values of x until they exceed
the next available value of y; then the values of y until they exceed the next available value of x;
then the values of x, and so on. While the values of one stream are being taken (and passed on
as output), the values of the other are ‘held up’.

It is not hard to express this iterative algorithm in Lucid. We simply use the function upon

to ‘slow down’ the two streams. Recall that the values of x upon p are those of x, except that the
new values are ‘held up’ (and the previous one is repeated) as long as the corresponding value of p
is false. (x upon p is the stream x with new values appearing upon the truth of p). If we let xx
and yy be the ‘slowed down’ versions of x and y, respectively, the desired output is (at any given
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time) the least of the corresponding values of xx and yy . When this least value is xx , a new value
of x must be brought in; when it is yy , a new value of y is required. Our program definition of
merge is therefore

merge(x, y) = if xx <= yy then xx else yy fi

where

xx = x upon xx <= yy ;
yy = y upon yy <= xx ;

end

(if xx and yy are equal, both input streams are ‘advanced’; thus duplications in the output are
avoided).

Our complete Hamming program is therefore

h
where

h = 1 fby merge
(
merge(2 ∗ h, 3 ∗ h), 5 ∗ h

)
;

merge(x, y) = if xx <= yy then xx else yy fi

where

xx = x upon xx <= yy ;
yy = y upon yy <= xx ;

end

end

5.2 Using Dataflow to Enumerate the Primes

The next problem which we consider is that of generating the stream of all primes. From the
dataflow point of view, the strategy is obvious: generate the stream of natural numbers greater
than 1 and pass it through a filter which discards those numbers which are not prime. The filtering
is accomplished using the operator whenever. Our program is therefore of the form

n whenever isprime(n)
where

n = 2 fby n + 1;
isprime(n) = · · · ;

end

and its dataflow graph looks like

2

fby whenever// // //
OO

+1 isprimeoo //

��

To complete our ‘proto-program’ we need only fill in the definition of isprime. The simplest
way to test if a number is prime is to run through all numbers greater than 2, whose squares are
less than the one in question, looking for a divisor. This is a simple, conventional nested iteration
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which can be easily written in Lucid:

isprime(n) = not
(
div(i,N)

)
asa div(i,N) or i ∗ i > N

where

N is current n;
i = 2 fby i + 1;
div(x, a) = a mod x eq 0;

end

(div(a, b) is true if a divides b). We could make a modest improvement by having an extra inner
loop variable which accumulates the square of i:

isprime(n) = not
(
div(i,N)

)
asa div(i,N) or j > N

where

N is current n;
i = 2 fby i + 1;
j = 4 fby j + i + i + 1;
div(x, a) = a mod x eq 0;

end

However, with or without this minor improvement, the simple derinition of isprime does far too
much work. There is no point, for example, in testing to see if 4 is a divisor if you already know
that 2 is not. The most efficient way to proceed is to test only for prime divisors (whose squares
are no greater than the number in question). But we have the stream of primes ‘on tap’: namely,
the output of the main program. We need only give a name to these values and use them in
the body of isprime. This actually works, provided we ‘prime the pump’ by using fby to specify
explicitly the fact that 2 is the first prime. The resulting program is

prime
where

prime = 2 fby
(
n whenever isprime(n)

)
;

n = 3 fby n + 2;
isprime(n) = not(divs) asa divs or prime ∗ prime > N
where

N is current n;
divs = N mod prime eq 0;

end

end

(notice that the resulting program has a loop with ‘mixed freezing’; in the inner where clause n is
available only in the frozen form N , but prime is used ‘fresh’).

For the sake of variety, let us now try a completely different strategy. A number is prime if it
is not composite; this suggests that we generate the stream of all composite numbers and take its
complement (with respect to the natural numbers greater than 1). The proto-program looks like

complement(composite)
where

composite = · · · ;
complement(x) = · · · ;

end

Our first subproblem is that of defining the complement filter. In general, it is not possible to
compute the complement of an arbitrary stream, because it is impossible to know for sure that a
given number will never show up. However, if the stream is already sorted (and is infinite so that
it never ‘runs dry’), then there is no problem: a number N is in the complement of the stream
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if the values in the stream go past N without ever actually equaling N . This observation leads
immediately to the following definition of complement :

complement(x) = i whenever iskipped
where

i = 2 fby i + 1;
iskipped = I < x asa I le X
where

I is current i;
end

end

This first attempt is not really very good, though, because the testing of each value of i requires
restarting the stream x from the beginning. What we need is an algorithm that gradually trans-
forms the stream x into its complement.

Such an algorithm is not hard to find. Consider, for example, the following possible values
for x:

5, 7, 8, 12, . . .

The desired values of the complement are

3, 4, 6, 9, 10, 11, . . .

and these values can be classified as follows: those between 1 and 5 (i.e., 2, 3 and 4), those
between 5 and 7 (i.e., 6), those between 7 and 8 (none), those between 8 and 12 (i.e., 9, 10 and 11)
and so on. This suggests that we generate the stream of ‘intervals’—lists of numbers lying between
successive values of x. These intervals can then be strung together to produce the desired stream
of complements.

This is not at all hard to do. There are three stages in the transformation: (i) produce the
stream e of pairlists of endpoints of these intervals; (ii) produce the stream l of intervals (each
value of l is a list of numbers); then (iii) ‘read off’ the values of l one by one to produce the
stream c of complements. Here is the new definition:

complements(x) = c
where

e = [% 1, first x %] fby [% next X, next next x %];
l = interior(e) whenever interior(e) ne [ ];
c = element(l);
interior(e) = m asa I eq k − 1
where

I is current hd(e);
J is current hd

(
tl(e)

)
;

k = J fby k − 1;
m = [ ] fby k − 1 :: m;

end

element(l) = hd(r)
where

L = l upon r eq [ ];
r = first L fby if r ne [ ] then tl(r) else next L fi;

end

end

For example, if x takes on the values given above, e takes on the values

[1 5], [5 7], [7 8], [8 12], . . . ,
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l takes on the values

[2 4], [6], [9 10 11 12], . . . ,

and therefore c takes on the values

2, 3, 4, 6, 9, 10, 11, 12, . . .

Note how, in the definition of element , we use upon to slow down l while its elements are being
‘read off ’. We filtered out the empty values of l to make this definition easier to write.

The above definition is satisfactory and illustrates well the way in which Lucid allows dataflow
to be mixed with more conventional forms of iteration (e.g., in the definition of the pointwise
function interior).

In actual fact, though, there is a much simpler way to define complement ; it can be done in
three lines, using upon. We simply slow down the stream x, repeating each value until a counter
catches up with it. Then we just select those values of the counter which are not equal to the
corresponding value of the slowed down x.

complement(x) = i whenever i ne xx
where

xx = x upon i eq xx ;
i = 2 fby i + 1;

end

(The value at a given time of xx is the least value of x not less than the corresponding value of i.)
For example, with the values of x given earlier, the following values of xx and i ne xx will be

produced

i xx i ne xx
1 2 true
2 2 false
3 5 true
4 5 true
5 5 false
6 7 true
7 7 false
8 11 true
9 11 true
...

...
...

and it is easy to see that the required values of i are selected.
Now that we have solved the first subproblem, we can move on to the second, that of producing

the stream of composites. A number is a composite if it is a proper multiple of some number greater
than 2. This suggests defining a filter that yields the stream of proper multiples of values of its
input stream. This is not hard to do, providing we are allowed to assume that the input stream
is increasing.

pm(x) = (2 ∗ first x) fby merge
(
i ∗ first x, pm(next x)

)
where

i = 3 fby i + 1;
end

The definition is fairly easy to understand. The proper multiples of the values of x are twice
first x; or first x multiplied by numbers greater than 3; or proper multiples of values of
next x.
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The composite numbers are then just the result of applying pm to a variable which takes on
the values 2, 3, 4, . . .. Fitting all the definitions together, we have the following prime-generating
program:

complement(composite)
where

composite = pm(n)
where

pm(x) = (2 ∗ first x) fby merge
(
i ∗ first x, pm(next x)

)
where

i = 3 fby i + 1;
end

n = 2 fby n + 1;
end

complement(x) = i whenever i ne X
where

X = x upon i eq X;
i = 2 fby i + 1;

end

merge(x, y) = if xx <= yy then xx else yy fi

where

xx = x upon xx <= yy ;
yy = y upon yy <= xx ;

end

end

There remains one very important improvement which can be made in this program. The definition
given for pm is rather inefficient in that it produces far too many values in the substreams which
are merged to give the stream of composites (recall that merge eliminates these duplications). The
class of composites is indeed the class of all proper multiples of numbers greater than two; but it
is enough to take only prime multiples thereof. Since the program is generating the primes, they
are at hand; and we can rewrite the program as

prime
where

prime = complement(composite);
composite = pm(2 fby next prime)
where

pm(x) = (2 ∗ first x) fby merge
(
i ∗ first x, pm(next x)

)
where

i = next prime;
end

n = 2 fby n + 1;
end

complement(x) = i whenever i ne X
where

X = x upon i eq X;
i = 2 fby i + 1;

end

merge(x, y) = if xx <= yy then xx else yy fi

where

xx = x upon xx <= yy ;
yy = y upon yy <= xx ;

end

end
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Of course, this introduces a feedback loop into the program: the stream of primes is being used to
generate the stream of primes. As we have already seen, this is not necessarily a mistake; as long
as the computation of a given prime involves only primes already computed, there is no danger
of the feedback loop drying up and the program going into deadlock. In this case we must ‘prime
the pump’ by applying pm to 2 fby next prime, rather than to prime itself.

Sometimes it is very easy to see that deadlock is impossible, and many programs pass a simple
syntactic test [the “cyclesum test” of Wadge (1981)] that ensures their robustness. For other
programs, however, like the one above, it is not so obvious, and often the lack of deadlocks is a
result of particular properties of the algorithm and the data it manipulates. In the above program,
for example, a little analysis will verify that deadlock is avoided only because there is always a
prime between n and 2n, with n > 1.

With some more complicated definitions, especially ones involving recursively defined non-
pointwise filters, it is in fact quite possible to make a mistake. For example, if we had defined pm
in the original program by the following equation,

pm(x) = merge
(
i ∗ first x, pm(next x)

)
where

i = 2 fby i + 1;
end

nothing ever comes out of the filter so defined (because we never ‘prime the pump’ with a fby). The
equation above is a true statement about the desired stream function, but that stream function is
not the least solution (this example, in a slightly different form, is due originally to David Park).

5.3 Processing Text as Streams of Characters

For a change of pace we will now look at a more practical, down to earth example: text formatting.
We will write a program which accepts a text (in English) in which sentences (but not words) are
spread over lines in an arbitrary manner. The output is required to be the same text, formatted
so each line is as close to 72 characters long as possible, without exceeding this length. We will
assume that a sentence is terminated by a period. The only other punctuation allowed will be
the comma. Each punctuation symbol must appear on the same line as the word preceding it.
Words in the source can be separated by arbitrary numbers of blanks. The input is the stream of
source characters (a character being a string of length 1); the output will be a stream of strings
terminated by newline characters, each of these strings being a line of output.

Our strategy, as usual, is to send the input through a series of filters that gradually transform
it into the output. The first stage replaces newlines by blanks; the second compresses blanks, so
that each word is separated from the following one by exactly one blank. Next, we accumulate
sequences of nonblank characters into words (and discard the blanks), giving a stream of words.
Finally, the last filter accumulates the words into lines which are produced each time they have
grown big enough.

Our proto-program, therefore, looks like

formline(formword(cblank(rmnewline(S))))
where

formline(z) = · · ·
formword(y) = · · ·
cblank(x) = · · ·
rmnewline(x) = · · ·
· · ·

end

The separate filters are relatively easy to define.
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The simplest, rmnewline, can be done with if–then–else:

rmnewline(x) = if x eq ‘\n’ then ‘ ’ else x fi;

The filter cblank involves a simple application of whenever:

cblank(x) = x whenever x ne ‘ ’ or next x ne ‘ ’;

For formword , we again use whenever to select ripe, fully formed words from the stream of partially
formed words:

formword(y) = w whenever ready
where

w = first y fby if next y ne ‘ ’ then w ^ next y else ‘ ’ fi;
ready = next y eq ‘ ’;

end

Here, for example, are sample values of y, w and ready

y w ready
‘T’ ‘T’ false
‘h’ ‘Th’ false
‘e’ ‘The’ true
‘ ’ ‘ ’ false
‘b’ ‘b’ false
‘o’ ‘bo’ false
‘o’ ‘boo’ false
‘k’ ‘book’ true
‘ ’ ‘ ’ false
...

...
...

The final filter, formline, works on the same principle. It builds up partial lines word by word
and selects ‘ripe’ ones using whenever;

formline(w) = line whenever lineready
where

line = w fby if not lineready then line ^ ‘ ’ ^ next w else next w;
lineready = length(line) + length(next w) + 1 > 72;

end

The whole program is therefore

formline(formword(cblank(rmnewline(S))))
where

formline(w) = line whenever lineready
where

line = w fby if not lineready then line ^ ‘ ’ ^ next w else next w;
lineready = length(line) + length(next w) + 1 > 72;

end

formword(y) = w whenever ready
where

w = first y fby if next y ne ‘ ’ then w ^ next y else ‘ ’ fi;
ready = next y eq ‘ ’;

end

cblank(x) = x whenever x ne ‘ ’ or next x ne ‘ ’;
rmnewline(x) = if x eq ‘\n’ then ‘ ’ else x fi;

end
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Clearly, a more elaborate version, which right justifies as well, could be organized on roughly the
same lines. It could produce an intermediate stream of ‘prelines’, a preline being a list of words
of roughly the right length. The prelines could then be fed into a ‘spacing’ filter which would
produce actual lines padded out with spaces. The more elaborate formatter could also detect the
end of the input stream and ‘flush’ the last line without attempting to justify it.

5.4 A Data Processing Example

For our next ‘down-to-earth’ example, we present a simple (and very simplified) example of ‘data
processing’. The program generates a stream of messages to members of a library. The messages
warn the reader that they have books which are overdue, or which were returned late and so
incurred a fine. There are two inputs to the program: a stream of records of the library’s holdings
and a stream of records of books returned during the day. Each record of a holding identifies
its title (which we assume is unique), the current borrower (or “none” if there is none), and the
current date due (again “none” if it is not on loan). Both streams are assumed to be already
sorted according to title.

Records will be represented as pairlists with the first component in each pair describing the
nature of the data in the second, e.g.,

[ [title ‘War and Peace’]
[borrower ‘N. Bonaparte’]
[due [ [year 1814]

[month 7]
[day 12] ] ] ]

Of course the data types of pLucid are not quite the best for this particular example; it would
be better to use a member of the Lucid family with ‘records’ much as in PASCAL or COBOL.
However, records are easily simulated with pairlists, as above.

message
where

message = ‘Dear’ ^ borrower ^ ‘:\n’ ^
case status of

“overdue” : ‘The book’ ^ title ^ ‘is overdue, please return it’;
“late” : ‘Please pay a fine on the book’ ^ title ^ ‘which was returned late’;
default : ‘’;

end

status = if precedes(today , datedue) then “OK”
elsif returned then “late”
else “overdue” fi;

return = contents(‘returns’);
holding = contents(‘holdings’);
returned = titleof (t) eq title
where

t = return upon titleof (return) eq title;
end

title = titleof (holding);
datedue = comp(holding , “due”);
borrower = comp(holding , “borrower”);
titleof (r) = comp(r, “title”);
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precedes(date1 , date2 ) =
year1 < year2 or

(year1 eq year2 and month1 < month2 ) or
(year1 eq year2 and month1 eq month2 and day1 < day2 )

where

year1 = comp(date1 , “year”);
year2 = comp(date2 , “year”);
month1 = comp(date1 , “month”);
month2 = comp(date2 , “month”);
day1 = comp(date1 , “day”);
day2 = comp(date2 , “day”);

end

comp(l, w) = hd
(
tl(c)

)
asa W eq hd(c)

where

W is current w;
L is current l;
m = L fby tl(m);
c = hd(m);

end

contents(s) = filter(‘cat’ ^ s, 0, ‘i’);
end

The heart of the program is the definition of returned ; this variable is true of the corresponding
value of holding , which refers to a book which has just been returned. The definition uses upon to
slow down the stream of returns, each return being held up until its corresponding holdings record
appears. The function contents, which is defined using the system interface pseudo function filter ,
yields the stream of objects in the file named by its argument.

The rest of the program is fairly conventional. For example, the function comp is a pair-list
lookup function. If w is a word and l is a pairlist, comp(l, w) is the second component of the pair
in l whose first component is w. If l is the pairlist given in the paragraph above, comp(l, “due”) is[

[year 1814] [month 7] [day 12]
]

The function comp therefore simulates the “.” operation of PASCAL: comp(l, “due”) corresponds
to the PASCAL expression l.due.

This function is computed in a simple subloop. The current values W and L of w and l are
‘frozen’, then the program simply runs down the list L until a pair with head W is found.

5.5 Swap Sorting in Lucid

Modern computing machines still spend a large part of their total operating time sorting: putting
sequences of data into some predetermined order. In the past quarter century many different
sorting algorithms have been defined and countless imperative sorting programs have been written.
It is only natural, then, to ask how one would write a sorting program in Lucid. In this section
and the next we will study a number of sorting algorithms and compare the dataflow approach to
the imperative one. Sorting may seem like a somewhat ‘boring’ topic, but it is a very important
one; and our study of sorting algorithms will illustrate very clearly the difference between Lucid
and imperative programming and the underlying contrast between dataflow and control flow. For
simplicity, we will restrict ourselves to sorting sequences of integers only.

The imperative approach is based on the idea of processing data at rest. The imperative pro-
grammer naturally tends to think of sorting as a problem of sorting data stored in memory—what
is usually called sorting “in place”. Also, since imperative programming is inherently sequential,
the tendency is to concentrate on algorithms which do one small piece of reordering at a time. The
‘unit’ of reordering is the exchange or ‘swap’ (of the contents of two storage locations). From the
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imperative point of view, a sorting algorithm is seen as an algorithm for generating an appropriate
sequence of swaps which puts the stored data in the desired order.

Simplest of all these swap-sorting algorithms is probably the selection sort: find the biggest
number in the sequence, swap it with the last element, find the next biggest, swap it with the next
to last element, and so on. Here is a PASCAL procedure which does an exchange sort on a vector
of 10 numbers (we assume that the type vector has been defined to be array[0..9] of integer).

procedure ssort(a : vector);

var i, j, Imax : integer;

procedure swap(var a : vector; i, j : integer);

var Temp : integer;

begin

Temp := a[i];

ali] := a[j];

a[j] := Temp

end;

begin

for i := 0 to 9 do

read(a[i]);

for j := 0 to 8 do

begin

Imax := 0;

for i := 1 to 9 - j do

if a[Imax] < a[i] then

Imax := i;

swap(a, j, Imax)

end

end;

Can we write a sort-in-place algorithm like this in Lucid? The answer is “yes”—provided the
underlying algebra has the right data structures and operations. We need arrays—sequences of
data objects which can be accessed randomly, i.e., which can be indexed (since only one dimension
of indexing is required, it would be better to call them “vectors”). We need a binary subscripting
operation which takes a vector a and an index i and returns the value of the i-th component—in
PASCAL notation, a[i]. We also need a ternary operation swap such that swap(a, i, j) is the
vector which results when i-th and j-th components of a are swapped. The selection sort algorithm
might look like this in an appropriate member of the Lucid family:

ssort(a) = a asa k eq 0
where

A is current a;
k = length(A)− 1 fby k − 1;
a = A fby swap(a, imax , k);
imax = imax asa j eq K + 1
where

K is current k;
A is current a;
j = 1 fby j + 1;
imax = 0 fby if A[j] > A[imax ] then j else imax fi;

end

end

(We have reused the identifiers a and imax in an attempt to imitate the style of the PASCAL
program.) In Lucid, ssort is a function: if a is a vector, the value of ssort(a) is the sorted version
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of a. The body of the where clause describes a purely conventional iterative algorithm with a
nested subloop for finding the largest of the remaining unsorted elements. The variables are used
in much the same way as they are in the PASCAL program. There are two loop variables in the
main loop, a and k. As the computation proceeds, a is always going to be a permutation of the
‘outer’ original a, and k counts down from 9. At each step in the iteration the last 9 − k values
of a are already in sorted order, i.e., a[k + 1..9] consists of the 9− k largest elements in ascending
order.

It is not hard to imagine that ‘conventional’ programs like the one above could be compiled
into an imperative language and run on a von Neumann machine. Even a semi-intelligent compiler
could be expected to notice that the loop variable a is updated purely by swapping and therefore
store all the values in one place and actually perform the swaps.

It should also be apparent that the other various iterative in-place/swapping algorithms can
be translated into Lucid. Here is a Lucid form of the next simplest sorting method, the ‘bubble’
sort.

bsort(a) = a asa k eq 0
where

A is current a;
N is current length(a);
k = N − 1 fby k − 1;
a = A fby (a asa j eq K

where

A is current a;
K is current k;
j = 0 fby j + 1;
a = A fby if a[j] > a[j + 1] then swap(a, j, j + 1) else a fi;

end);
end

Neither of these two definitions can be used in programs in pLucid—pLucid does not have vectors.
It does, however, have lists, and vectors can easily be simulated with lists. We need only define
two functions, swap (as above) and component (with component(a, i) being the i-th component
of a; in PASCAL notation, a[i]). Adequate definitions are easy to find:

component(a, i) = hd(l) asa j eq I
where

I is current i;
A is current a;
j = 0 fby j + 1;
l = A fby tl(l);

end
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swap(a, i, j) = b asa next l eq nil
where

A is current a;
I is current i;
J is current j;
n = 0 fby n + 1;
l = A fby tl(l);
AI = hd(l) asa n eq I;
AJ = hd(l) asa n eq J ;
c = case n of

I : AJ ;
J : AI ;
default : hd(l);

end;
b = [% c %] fby b <> [% next c %];

end

Naturally, we would not expect the resulting pLucid versions of selection or bubble sort to be
particularly efficient. They are using a data type (lists) designed for sequential access to simulate
other objects (vectors) designed for random access.

5.6 Dataflow Sorting in Lucid

The two examples just given are examples of Lucid programming but not of dataflow programming—
the algorithms are iterative algorithms, not dataflow algorithms. The programmer, whether using
PASCAL or Lucid, still thinks of the data as being processed while at rest. As long as Lucid is used
this way, it is basically a form of rigorously structured programming in which (i) globals cannot
be altered in nested loops; and (ii) loop variables are all initialized and updated together. Lucid
used in this way is therefore essentially a single assignment language (like ID or VAL). These are
sometimes called dataflow languages but single assignment by itself still means processing data
which is at rest.

Therefore, instead of working our way through the interchange sorting algorithms, coding them
up in Lucid, let us see if we cannot approach the sorting problem from the dataflow point of view.
In fact we can already apply the dataflow approach to the lowly Bubble Sort. The Bubble Sort
algorithm can be viewed as involving going over the vector from beginning to end repeatedly until
the array is in order. Bubble sorting is a kind of ‘combing’ operation: the comb is dragged across
the vector over and over until it is finally ‘smooth’ (sorted). Normally, one imagines the procedure
being carried out with only one comb, so that the second pass cannot begin until the first pass
is ended. This assumption, however, is just a reflection of the strictly sequential, one-operation-
at-a-time outlook characteristic of the imperative languages. In reality, there is no reason not to
use more than one comb and start the second pass before the first has finished. The second ‘comb’
could follow close behind the first.

Now imagine that the two combs (processors) are at rest and that the data is in motion. The
stream of data is passing through two filters, each of which performs a bubblepass—we now have
a dataflow algorithm. Of course, there is no reason to restrict ourselves to only two bubblepass
filters; we can use as many as we like. A stream of N numbers will be completely sorted once it
has passed through N such filters.

bubble bubble . . . bubble// // // // //

Each bubble filter works by remembering one datum, namely the largest it has seen so far in
its input (with eod considered as infinite). Every time it receives a new input, it compares the
new input with its current maximum, keeps the larger of the two as the new maximum and sends
the smaller on as output.



98 CHAPTER 5. PROGRAMMING IN LUCID

This is not hard to formalize in Lucid; and there is no need for any ‘storage’ (except of single
values in the bubble filters). A simple-minded translation of bubble sort looks like this:

bsort(a) = bubbles
(
a, slength(a)

)
where

bubbles(a, n) = if n eq 0 then a else bubbles
(
bubble(a), n− 1

)
fi;

bubble(a) = smaller(max , next a)
where

max = first a fby larger(max , next a);
larger(x, y) = if iseod(y) then y elsif x < y then y else x fi;
smaller(x, y) = if iseod(y) then x elsif x < y then x else y fi;

end

slength(x) = index asa iseod x;
end

Unfortunately, this version is a little bit too simple minded. For one thing, it needs to know
the length of a, which means using slength to go all the way to the ‘end’ of a (i.e., until eod is
encountered) before any processing begins. Also, each bubble filter passes over the whole stream
when we know that the input to the n-th filter has its first N − 1 components already in order.
Here is a better version that does not need length and that strips off the last output of each filter
before passing it on to succeeding ones.

bsort(a) = if iseod(first a) then a

else follow
(

bsort
(
allbutlast(b)

)
, last(b)

)
fi

where

b = bubble(a);
bubble(a) = · · · {as before};
follow(x, y) = if xdone then y upon xdone else x fi

where

xdone = iseod x fby xdone or iseod x;
end

last(x) = (x asa iseod next x) fby eod;
allbutlast(x) = if not iseod(next x) then x else eod fi;

end

and the dataflow diagram looks like

last

bubble allbutlast bsort both if–then–else// // // // // //

//

��

first iseod// //

OO OO

[There is one unusual feature of this dataflow diagram, namely the if–then–else ‘node’. In
ordinary pipeline dataflow this would not work. The point of if–then–else is to avoid compu-
tation; but how can a node affect activity upstream? In reality, a Lucid implementation would
use demand-driven computation. For this reason the if–then–else node does work, because it
prevents demands going upstream to start unneeded computation. However, we still encourage
programmers to think in terms of data-driven computation when designing their algorithms. One
way of reconciling the two points of view is to imagine that the if–then–else node works as
follows: the test races ahead to the node, and then the node sends messengers up the arc not
selected to ‘call off’ any computations which may have been started. The use of ‘kill tokens’
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(or “lethons”) in an actual implementation might not be practical; but there is no harm in the
programmer imagining their use, because the complications can be ignored.]

We can try to make our program even smarter by checking if the first bubble pass was successful
in completely ordering the stream, and so avoid later computation. This ‘clever’ version is as
follows:

bsort(a) = if iseod(a) then a
elsif inorder(b) then b

else follow
(

bsort
(
allbutlast(b)

)
, last(b)

)
fi

where

b = bubble(a);
bubble(a) = · · · {as before};
inorder(b) = inordersofar asa iseod(next b)
where

inordersofar = true fby inordersofar and b < next b;
end

follow(x, y) = · · · {as before};
allbutlast(x) = · · · {as before};
last(x) = · · · {as before};

end

Actually, this new version is not quite as clever as we might think. The outcome of the test
inorder(b) is not available until all the values of b have been produced. If we want to avoid
sending the stream on to bsort before we are sure that it is not already sorted, these values must
queue up somewhere while we wait to see what to do with them. We could avoid queuing and
send them along anyway, with the idea that when and if we finally discover that no further sorting
is required, we will abandon the computations generated by the unnecessary passes. In this case,
though, there is no guarantee that all or even any of the unnecessary computations will actually
be avoided. It seems that as a general rule the computational complexity of parallel algorithms
is not easy to determine, at least when an implementation is allowed to try and get a ‘head start’
by beginning computations which may later prove to be unnecessary. (The demand-driven Lucid
interpreter performs only those computations which are required; it is not allowed to ‘speculate’
about the usefulness of particular results.)

The bubble and selection sort are in a sense ‘iterative’: the stream passes through a series of
filters in a straight line: there is no branching in the flow. There is also a whole family of dataflow
sorts which are ‘hierarchical’ or ‘recursive’ in the sense that they divide the input into two parts,
sort the parts, then recombine them.

The first of these recursive ones is ‘merge’ sort: the input stream is divided (by taking alter-
native items) into two streams, each of these is sent to be sorted, and the result is then merged.
Here is the network.

msort(a) = if iseod(first next a) then a
else merge

(
msort(b0),msort(b1)

)
fi

where

p = false fby not p;
b0 = a whenever p;
b1 = a whenever not p;
just(a) = ja
where

ja = a fby if iseod ja then eod else next a fi;
end
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merge(x, y) = if takexx then xx else yy fi

where

xx = x upon takexx ;
yy = y upon not takexx ;
takexx = if iseod(yy) then true

elsif iseod(xx ) then false

else xx < yy fi;
end

end

Here is the dataflow diagram:

next first iseod// // //

whenever msort merge if–then–else// // // // //
OOOO

p

not

��

OO

whenever msort// //
OO

��

The merge function here is a revised version of the definition used earlier; it has been revised
to handle pseudo-finite streams, i.e., streams in which eod appears.

Many applications programmers will find merge sort very familiar. There is in fact a whole
family of more or less elaborate sorting methods (the “external” sorts) based on this same principle.
The external sorts are very important in data processing software. They are written in imperative
languages like COBOL but are not exchange sorts; they are used to sort data sets, stored on tape,
which are too big to fit into memory. The COBOL routines simulate the action of the merge
function above, reading data, item by item, from one or the other of two tape drives and writing
the merged result on a third. The external sort programs represent true dataflow algorithms
(although they are usually not recursive). Programmers often think of the tapes as storing a
stream of records. The programs are not really being run on a von Neumann machine: the machine
is involved, but most of the data is stored outside the von Neumann memory. Tape storage is
different in character from von Neumann storage: you do not update a tape by performing a
sequence of assignments to various ‘locations’ on the tape. The data on a tape can only be
processed by putting it in motion, i.e., by reading through the tape.

Finally, we give another ‘recursive’ dataflow sort, which works as follows: the input stream
is divided again into two, but not at random; the first half consists of those less than the first
element in the stream, and the second half of those greater than or equal to the first datum. By
dividing the stream this way, we save ourselves a merge; we just output all of the sorted first half



5.7. INPUT/OUTPUT IN LUCID 101

and then all of the sorted second half. Here’s the program:

qsort(a) = if eof(first a) then a
else follow

(
qsort(b0), qsort(b1)

)
fi

where

p = first a < a;
b0 = a whenever p;
b1 = a whenever not p;
follow(x, y) = · · · {as before};

end

next first iseod// // //

whenever qsort conc if–then–else// // // // //
OOOO

first

less

not

��

OO

//

//

��

whenever qsort// //
OO

��

Which of these is better? The recursive ones perform a total of order N log N comparisons
compared to the repetitive ones, which may do order N2; on the other hand, bsort is good for lists
which are almost sorted. It is difficult to say anything more definite about complexity without a
more precise operational semantics. A great deal depends on the implementation; on whether the
program is compiled into an imperative language, or evaluated by a demand-driven interpreter,
or [as in Sargeant (l982)] run on a dataflow machine.

Even though the examples given in this chapter are still relatively small, it should be clear that
the dataflow approach is applicable to (and well suited for) a large class of problems. It should also
be apparent that Lucid can express these algorithms quite naturally (especially since conventional
iteration is still available—programmers are not forced to forget everything they ever learned).
The examples just given have, of course, revealed a few deficiencies in the language—such as the
lack.of arrays, records, and other data types, or the lack of ‘filters’ with more than one output.
In a later chapter of the book we will consider these limitations in more detail and show that at
least some of them can be solved quite easily without violating Lucid’s basic principles.

Nevertheless, it is remarkable how much can be done in what is after all a very simple language.
It is especially surprising that arrays (randomly accessible data at rest) were not needed in any of
these problems; iterative algorithms with array loop variables do not arise naturally even though
the solutions of these same problems in (say) PASCAL would make heavy use of arrays. It seems
that random access storage is not as important as one might think. Many programs in imperative
languages use arrays with a pointer to simulate streams; in other words, to simulate serial access.

5.7 Input/Output in Lucid

One common misconception about nonprocedural languages is that they are unsuitable for appli-
cations involving complicated input and output. Input and output operations are supposedly so
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dynamic that they cannot possibly be described by static mathematics. This belief is apparently
confirmed by experience with some nonprocedural languages, in particular with LISP and PRO-
LOG. In both these languages the pure subsets do not allow I/O, and the programmer is forced
to use ‘dirty’ features whose invocation causes input or output to occur as a side effect.

This belief is nevertheless a misconception. It is the result of an unwarranted generalization
based on experience with languages which in some ways are very limited. We have already seen, in
Chapter 3, that I/O does not have to be one of the skeletons in the nonprocedural cupboard. We
have already seen examples of programs which (say) read numbers in as input and write numbers
out as output. All that is needed is the right mathematical objects (infinite lists or streams)
together with an appropriate I/O convention.

Of course the programs seen up to now have been based on a very simple-minded form of
input/output. These programs all acted as filters, transforming one or more input streams of
data objects into an output stream of data objects. What about printers, plotters, VDUs and
typesetters? What about terminals, transducers, card readers and lightpens? Surely real-world
I/O needs commands to move a cursor around the screen or to lift the pen off the paper.

In actual fact streams of data objects are adequate for almost every form of I/O, no matter
how ‘dirty’ the application may seem. Those who insist that there must be more to input and
output are confusing software and hardware, and are confusing data and machinery. Consider
a typical VDU terminal connected to a computer. The interface between the terminal and the
computer is very narrow, both physically and logically. Physically, the interface is a single wire
capable of carrying signals in both directions. Logically, the interface consists of two streams of
characters, one stream flowing from the terminal to the computer, the other flowing from the
computer to the terminal. Of course, the terminal interprets some of these characters (such as
ordinary letters of the alphabet) as data items. These represent information to be displayed on
the screen. Others (such as control characters) are treated as commands. They may cause the
position of the cursor to change, or cause the screen to be erased. However, the distinction between
‘data’ and ‘command’ (which is not necessarily a sharp one) is made by the device and not by
the program feeding the device. The purpose of the program is to generate the required stream
of characters. The program produces a stream of information, and nothing more. Only hardware
can produce activity.

Imperative languages often obscure the fact that data and commands are really just two dif-
ferent forms of information. For example, in PASCAL the data sent to the outside world appears
as arguments of the various I/O commands. However, the control information is treated very
differently. If the programmer wants the printer to start a new line, he or she must cause a
writeln command to be executed (instead of sending a newline character). Similarly, to detect
the end of input the programmer has to evaluate a predicate, rather than test the last character
input to see if it was a special end-of-file character. It is hardly surprising, then, that imperative
programmers think of I/O as involving two completely different aspects, data and control. They
naturally assume that nonprocedural languages, which manipulate data only, are incapable of
performing I/O.

In actual fact programs intended to drive an output device do not involve any special techniques
not required by other forms of informationl processing. The goal is to generate a particular stream
(of characters), the only difference being that some of these may be nonprinting characters. This
causes no difficulty in pLucid; quoted strings allow an escape convention similar to that of C. Thus
‘hello world\n’ is a string of length 12 whose last character is a newline character. The pLucid
interpreter normally prints strings as character constants—enclosed in quotes—using the escape
conventions, separated by blanks. On input, it expects strings to be represented in the same way
(the output of one running pLucid program can therefore be sent as input to another). There are,
however, options which cause input to be read character by character, and output strings to be
produced without quotes, with escapes ‘expanded’, and without separating blanks. Output from a
program being interpreted under these options can be sent directly to a device. The result will be
flashing lights, whirring tape drives, strange beeping noises and any other activity the programmer
might desire.

The information-stream view of input/output is inadequate in only one respect: it does not
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allow the programmer to specify the rate at which output is produced and input consumed. It
does not even allow the programmer to specify the way in which input and output interleave. You
can write programs that run interactively in pLucid, but the interactive property is a result of the
way the interpreter works. It is not specified by the program. This is a genuine weakness of Lucid,
though not of dataflow in general. The problem can be solved by using a more elaborate notion
of stream, one in which “pause objects” (or “time outs”) can occur. Alternatively, we can allow
datons to carry ‘time stamps’ indicating when they were produced. These ideas will be discussed
briefly in §5.10.

The basic principles discussed are illustrated by the following simple program. It inputs a
character stream c (in which it expects only blanks and digits). It interprets sequences of digits as
numerals and extracts the corresponding stream of integers. The positive numbers in this stream
are filtered out and reconverted into a character stream, each number being printed on a new line.

d
where

k = 0 fby if c eq ‘ ’ then 0 else 10 ∗ k + val(c) fi;
n = k whenever c eq ‘ ’;
pn = n whenever n > 0;
num = (s asa i eq 0) ^ ‘\n’
where

N is current pn;
s = ‘ ’ fby dig(i mod 10) ^ s;
i = N fby i div 10;

end

d = substr(m, 1, 1)
where

ln = length(m);
m = nnum fby if ln > 1 then substr(m, 2, ln) else next nnum fi;
nnum = num upon ln eq 1;

end

val(z) = case z of

‘0’ : 0; ‘1’ : 1; ‘2’ : 2; ‘3’ : 3; ‘4’ : 4;
‘5’ : 5; ‘6’ : 6; ‘7’ : 7; ‘8’ : 8; ‘9’ : 9;
default : 0;

end;
dig(z) = if z eq 0 then ‘0’ else substr(‘123456789’, z, z) fi;

end

In this program k is the stream of partial values accumulated as a numeral is being scanned.
The stream n of completed numbers is extracted from k with a simple whenever. The output
processing begins when pn (the positive numbers to be output) is converted into the stream num
of corresponding numerals, each value of which is a string of the appropriate digits terminated by
a newline character. Then this stream of strings is broken down into the corresponding stream
of individual characters (this last step is not really necessary; the pLucid interpreter will do it
automatically).

The above program illustrates a problem that appears very often in programs doing I/O-related
processing, but is encountered elsewhere as well. Nearly every one of the filters described above
has the property that the input and output rates are different. For example, several values of c
will be consumed for each value of n produced (because each number is represented by several
digits). On the other hand, each value of pn produces several values of d, for the same reason.

In imperative programs this kind of interface is often the result of “reading and writing” inside
a loop. In Lucid, loops have no side effects. Even nested loops (using is current) can produce
only one value per step of the outer computation. The usual imperative programs are impossible
to imitate directly, and so many people conclude that Lucid is hopelessly limited in this respect.
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These sort of programs are not, in fact, hard to write in Lucid. In those cases in which many input
values are required for each output, the operation whenever can be used to obtain the ‘speed up’
effect. Conversely, the operation upon can be used to ‘slow down’ a stream being consumed.

The programmer can write special-purpose expressions using whenever and upon as required,
just as in the above program. There is, however, a more systematic technique: to use ‘bundling’
and ‘unbundling’ filters. A bundling filter gathers up individual items in its input and passes on
‘bundles’ (strings or lists) from time to time. An unbundling filter does the opposite, accepting
a stream of bundles and producing (at a much faster rate) a stream of individual items. (The
function element used in one of the prime-generating programs given earlier is a list unbundler.)

We can easily abstract the definition of a string unbundler from the definition of d in the above
program.

unb(b) = substr(m, 1, 1)
where

ln = length(m);
m = B fby if ln > 1 then substr(m, 2, hi) else next B fi;
B = (b whenever b ne ‘’) upon ln eq 1;

end

(notice that empty values of b are filtered out; this was not necessary in the example program).
For example, if the first few values of b were

‘The’, ‘quick’, ‘brown’, . . .

then the first few values of unb(b) would be

‘T’, ‘h’, ‘e’, ‘q’, ‘u’, ‘i’, ‘c’, ‘k’, ‘b’, . . .

Here is the definition of a character bundling operation.

bun(x, p) = y whenever next p
where

y = x fby if p then ‘ ’ else y ^ x fi;
end

In general, the values of bun(x, p) are those obtained by concatenating values of x up to but not
including the points at which p is true. For example, if the first few values of x are

‘H’, ‘o’, ‘w’, ‘ ’, ‘n’, ‘o’, ‘w’, ‘\n’, ‘b’, . . .

then the first few values of bun(x, x eq ‘ ’ or x eq ‘\n’) are

‘How’, ‘now’, . . .

Bundling could have been used in the program above. First, we would use whenever to compress
blanks and remove leading blanks, as in the formatting example (call the resulting stream a).
Then we would bundle the values of a using the expression bun(a, a eq ‘ ’). Then the resulting
stream of numerals could be converted to a stream of numbers by means of a pointwise conversion
function.

5.8 Debugging Lucid Programs

Propagandists for the nonprocedural approach often emphasize the fact (or the claim) that pro-
grams in these languages tend to contain far fewer bugs. There is, of course, some reason to expect
that this is true; many of the most error-prone features (goto statements, side effects, pointer vari-
ables) have been completely eliminated. Programs are also much shorter, so that remaining bugs
have less room to hide.
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On the other hand, new features have been added and very complicated data types can be
constructed. Also, backtracking and ‘lazy’ evaluation can be operationally very complicated, so
complicated that the programmer finds it impossible to understand what the program is actually
doing. Execution traces are therefore usually worthless. Also, the program is often ‘preprocessed’
by the implementation into an unintelligible form before being passed on to the actual interpreter.
Run-time error messages often refer to the transformed version and so are of little help.

Experience has shown that programmers using Lucid are still not quite infallible. Errors
still occur, and can result in total rubbish being produced as output. What should the Lucid
programmer do in a ‘bug situation’?

The most important piece of advice to the bug victim is still DON’T PANIC. Help is at hand,
though not always in the form in which it is available to the imperative programmer. (Sorry, no
core dumps.)

The safety net provided by the pLucid interpreter is the run-time error system. Every time an
operation (such as addition) receives operands (such as strings) which it cannot handle, a report
is sent on the standard message output. The pLucid preprocessor passes the source program
through several stages of message; but it passes parts of the original source on as well. When the
interpreter delivers an error message, it is able to display the source line containing the relevant
occurrence of the operation symbol in question, and even points it out to remove all doubt. The
report states the exact nature of the error and displays the ‘culprit’ (the unexpected value). This
feature allows the programmer to catch and exterminate most simple, local bugs.

Some bugs, however, manage to produce global rubbish without local errors, or produce inex-
plicable local errors. What should the programmer do then?

The pLucid interpreter does have a demand trace facility, but this is intended for research
purposes and is unlikely to be of any help in debugging. The problem is that the interpreter
computes values of variables in a very mixed-up order. Also, the time/place tagging system is
very hard to understand. The second rule of debugging is therefore DON’T TRACE.

Fortunately, there is a third rule of debugging, one which is more helpful: BE SYSTEMATIC.
Try to narrow down the search for the bug until it is confined to a single line or expression and
cannot escape being seen. This rule is true in all programming languages but is especially useful
on dataflow programs. In a Lucid dataflow program there are no side effects, and the interface
between modules (filters) is very narrow. If a buggy program consists of three filters in series,
then at least one of these filters must be malfunctioning. Therefore, test them, one at a time, by
examining the values of the intermediate streams. This sort of testing needs a proper programming
environment for it to be carried out in the most convenient way (Boffins, please note). However,
even with just the pLucid interpreter and an editor a reasonable procedure is available.

For example, suppose that a formatting program like the one given earlier is acting up. The
program is a big where clause of the form

formline(formword(cblank(rmnewline(S))))
where

formline(x) = · · ·
formword(x) = · · ·
cblank(x) = · · ·
rmnewline(x) = · · ·
· · ·

end

Testing begins by running the program with the subject replaced by rmnewline(S). If that is
successful, the next test is the same program with cblank(rmnewline(S))—and so on for the other
filters. Once the faulty filter is found, its sublilters can be systematically tested until the bug is
finally located.

The real first principle of debugging, though, is not to create bugs in the first place. For help
in these matters please consult a local Preacher or Wizard. The greatest help the Wizards could
provide would be a sophisticated type checker which could detect, at compile time, at least some
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of the mistakes which at present are not caught until the operations are attempted. Chapter 7
contains a further discussion of this issue. As for the Preachers, their most valuable piece of advice
is probably “test as you write”. In other words, test the rmnewline filter as soon as it is written,
before the filters downstream are constructed (or else write simple versions of all the filters and
test the whole pipeline).

5.9 Interfacing with UNIX, or Lucid Goes Cowboy

Yes this is the section that many of you have been waiting for. You have patiently read pages
and pages of self-righteous preaching about the “purity” of Lucid and the evils of languages with
“impure” features. Now, it seems we are forced to admit that even Lucid has its own version of
LISP’s notorious prog feature. You knew we would have to give in sooner or later. It just proves
once again that you cannot do real computing without commands.

If this is what you are expecting from this section, then we fear you will be somewhat dis-
appointed. The pLucid interpreter does in fact provide an interface to the ‘real world’; and this
feature could be used to evil ends. But it is not inherently dirty, and can be used in a manner
consistent with the immaculately pure and functional Lucid semantics.

Why some of you might ask, do you need a feature like this at all? Why not do everything in
Lucid? Why open the door to temptation? Surely you do not want Lucid programs demeaning
themselves by cooperating with programs written in PASCAL, C or even (ugh!) BASIC!

We can sympathize with this point of view but must reject it as unrealistic. We have never
claimed that Lucid is a universal programming language adequate for all applications. Further-
more, the existing pLucid interpreter is far from adequate (in terms of performance) even for
applications for which the language itself is suitable. If we try to force people to choose between
doing all of a program in Lucid, or doing none of it in Lucid they will usually be forced to choose
the latter. However, if the language has a ‘loophole’ so that some of the work can be done in other
languages then users can enjoy at least some of the benefits of definitional dataflow programming.

Suppose for example, that the programmer wanted to implement some sort of database system—
a record library or something similar. It would be completely unreasonable to try to do it all in
pLucid. The interpreter is far too wasteful of space and time, and the language was not intended
for database applications in the first place. At the same time, the actual user interface might be
much easier to write in Lucid (or PROLOG, or LISP) than in a lower level language. Is it really
such a bad idea to write the interface in Lucid and the actual data-management part in C? Is this
not a better solution than writing it all in C?

The interface with a particular operating system depends on the system itself With the old-
fashioned, JCL-type operating systems this could be quite difficult. These systems are all based on
commands which update files. UNIX however, is very different. In UNIX there are still commands
of course, but the system has a very large ‘pure’ subset. This pure subset is based, like Lucid,
on the notion of a filter. The interpreter itself is designed so that Lucid programs can be used
as filters and appear in pipelines. This, in a sense, is UNIX’s interface with Lucid. The pLucid
interpreter simply reverses the idea, and allows the pLucid programmers to use UNIX filters in
their own pLucid ‘pipelines’.

The interface is syntactically very simple. The interpreter provides a pseudo-operation filter
which takes three arguments, the first of which should be a string. The interpreter evaluates this
expression (filter applied to its arguments) as the stream of values which results when the values
of the second argument are fed into the standard input of the UNIX filter denoted by the first
argument. (The third argument is used to specify various options). For example, the output of
the pLucid program

filter(‘sed s/1/11/g’, i ** 2, ‘ ’)
where

i = 3 fby 1 fby 9 fby eod;
end
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is 9, 11, 811. (each occurrence of the digit 1 has been replaced by 11). UNIX filters expect streams
of characters; the characters transmitted are those which make up the representation of pLucid
data as constants. Different elements in the stream are separated by newlines.

The interface function filter can also be used inside nested loops and function definitions;
different invocations of the specified process will be spawned as needed. Suppose, for example,
that tot is a filter which produces a running total of the numbers it reads in. The pLucid program

avg(a ** 2)− avg(a) ** 2
where

avg(x) = next s/n
where

s = filter(‘tot’, x, ‘ ’);
n = 1 fby n + 1;

end

end

produces a running standard variance of its input stream a. There is only one textual reference to
the ‘external’ function tot , but when the program is interpreted (or rather, evaluated) the pLucid
evaluator will correctly set up two versions of tot . One of the tot processes will be fed the values
of a, and the other will be fed the values of a ** 2.

The interface is not quite as simple as it appears to the user. In UNIX, pipelines are data
driven and values are produced in order. However, the pLucid interpreter works on a demand-
driven basis, and demands are not necessarily generated in chronological order. Also, there are
severe limits on the number of pipes and processes a user can set up. In spite of these difficulties
the pLucid interface is good enough to be useful and shows what is possible in principle.

Of course there is no guarantee that the UNIX process named as the first argument of filter is
a pure filter. It could be a command which causes a side effect. Using filter in this way is genuine
dirty Lucid programming. There are, however, situations in which side effects are excusable. An
equation like

y = filter(‘tee xvals’, x, ‘ ’);

is equivalent (as far as the output of the program is concerned) to the equation y = x. There is
no side effect on the pLucid program itself. But running the program does have a side effect—it
causes the values of x to be dumped on the file xvals. Of course, this would be very useful for
debugging: it allows the programmer to ‘spy’ on selected parts of the program without altering
the program or its output.

There is even another naughty but nice use of side effects. Suppose that term is a filter that
sends its standard input straight to a terminal, and sends any input from the terminal to its
standard output. When a program containing the equation

y = filter(‘term’, x, ‘ ’);

is run, the person sitting at the terminal will be able to act as a ‘human filter’. Values of x will
be sent one by one to the terminal, and values of y will be read from the keyboard. This could
be useful in debugging. It could also be useful in top-down testing: you can test a program even
though some crucial filter is not yet written. The equation above allows the programmer to ‘stand
in’ for the unwritten filter, and do its work by hand.

The pLucid/UNIX filter works well because pLucid and UNIX are well matched: programs in
both systems are organized on roughly the same principle, namely as dataflow. In this situation
the distinction between programming language and operating system language begins to blur.
Once you have devised a dataflow solution to a problem, you have a choice about how to proceed.
You can write the program as ‘basically’ a shell pipeline, in which pLucid programs can appear
(thanks to the interpreter). On the other hand, you can write it as ‘basically’ a pLucid program
in which UNIX filters appear (thanks to the filter interface).
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In the first situation pLucid is being used as a programming language along with (say) PAS-
CAL or C. In the second case, however, pLucid is being used as a kind of high-level equational
operating system language (LUNIX?). Of course the pLucid interpreter is too inefficient to make
the second approach as useful as it could be; but the pattern is clear. Perhaps in the not too
distant future, when the nonprocedural millennium has arrived, the development will reach its
logical conclusion. This conclusion is the complete abolition of the distinction between a system
language and a programming language. This would also mean the abolition of the distinction
between “programming in the small” and “programming in the large”.

5.10 Interactive and Real-Time Programming

What? Writing programs that interact with their users—in real time! Surely this is impossible
(and undesirable) in a nonprocedural language. Have they no shame? Is nothing sacred? (Or
rather, is nothing profane?)

The above paragraph characterizes the possible reactions of some of our readers on seeing the
title of this section. Those of Mystical tendencies will be shocked to see us demean ourselves
even further by taking on dynamic (and, therefore, supposedly nonmathematical) concepts such
as “interaction” and “real time”. As if ordinary input/output was not bad enough. Other readers,
of the Western (Cowboy) persuasion will also be shocked—and in a state of total disbelief. They
have always assumed that nonprocedural languages are fine for abstract, mathematical, ivory-
tower activities (infinite lists of primes and such) but useless for real-world computation. The
Mystics and the Cowboys are on most questions totally opposed, but they do agree on one thing.
They both assume that nonprocedural languages are not really “of this world”—that they are
incapable of specifying genuine activity.

The Mystics think this is a good thing. They look down on concepts such as interaction as “low
level” and “operational”. They believe programmers should turn their backs on all this confusing
talk about things happening, data being input and output and systems changing their state.
Their languages deal with abstract, eternal, unchanging pure and clean mathematical values. The
concept of some particular thing happening at some particular time is alien to their whole way of
thinking. They leave it to the lower orders (implementers) to worry about such trivial, distracting
and menial details.

The Cowboys, not surprisingly, have a different view of the matter. They see the Mystics as
being hopeless snobs who refuse to soil their hands doing a little work. They consider it to be
sheer insanity to pretend that the correctness of a program can be discussed in purely static terms.

For once, it must be admitted that there is something to the Western point of view. For
example, consider a simple stack-based desk calculator. The input (of a complete session) is a
finite sequence of commands (to stack a given number, to add the top two stack elements, etc.).
The output is also a finite sequence (of numbers computed). But a program that produces nothing
until the user signs off could hardly be considered correct! An even better example is a screen-
editing program. Imagine a user invoking a screen editor. Nothing appears on the screen. Then
the user tries to move the cursor around on the screen. No effect. Even the commands to enter
and delete text seem to be completely ignored. Finally, the user types the quit command in anger
and frustration—only to see the screen come to life, the cursor bounce around, and pieces of text
appear and disappear. The performance turns out to be an “instant replay” of the editing session
that seemed to have failed. The editor has indeed produced the correct output. Of course the
output appeared too late to be of any use—but we must learn to think abstractly about these
things!

Needless to say, nobody really believes that time is unimportant, not even the most ethereal
of the Mystics. There are in fact many implementations of nonprocedural languages which allow
the user to interact with programs. Interactive programs are especially easy to write in Lucid,
because input and output are already treated as streams of values. Here, for example, is a program
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implementing a simple desk calculator like the one mentioned above.

hd(stack) whenever cmd eq “w”
where

stack = [ ] fby
if isnumber(cmd) then cmd :: stack
elsif cmd eq “+” then hd(stack) + hd

(
tl(stack)

)
:: tl
(
tl(stack)

)
elsif cmd eq “*” then hd(stack) ∗ hd

(
tl(stack)

)
:: tl
(
tl(stack)

)
elsif cmd eq “w” then tl(stack)
else stack fi;

end

When this program is evaluated, the evaluator will ask for the first value of cmd . The user might
type in 35 (which the program interprets as a command to push 35 on its internal stack). No
output will be produced, but the second value of cmd will be requested. If 73 is typed in, there
will again be no output from the program, only a request for the third value of cmd . If this third
value is + (meaning add the last two numbers), still no output will appear. However, if the next
value of cmd entered is w (meaning write the top of the stack), the output 108 will finally be
produced. If the program is run with the evaluator’s prompts turned off, it will behave just like a
program written in PASCAL with read and write commands.

The behavior just described is an immediate consequence of the “laziness” of the demand-
driven interpreter. The interpreter does not begin by trying to read anything in; it begins by
trying to compute the first value of its output. The demand for this value ‘propagates’ through
the program and generates demands for other values at other times. It asks for an input value
only when it actually needs it—if it needs any at all. As soon as the time-0 value of the output
has been computed and printed, the interpreter begins working on the time-1 value, and again
asks for input only as required. It continues this way with the values at times 2, 3, 4 and so on
forever, or until one of these values is eod .

The resulting behavior is almost always satisfactory. For example, the program A ∗ A, which
gives repeated squares of the numbers in its input stream, will ask for a number, print its square,
ask for another number, print its square and so on. The desk calculator program above will
behave according to the näıve view that it is obeying the commands typed in. And the screen
editor (which appears in the pLucid manual) will behave like a normal screen editor written in
a conventional command language. The convention that output be produced as soon as enough
input is available to calculate it is nearly always what is required.

The interpreter avoids a number of I/O anomalies by always asking for input values in the
correct order (times 0, 1, 2, 3, . . . ) even if it might need (say) the value at time 3 before it needs
the value at time 2. It also is careful never to throw away input values. It does not want to find
itself having to ask the user, “say, what was the 23rd number you typed in again?” As a result
a program running on the evaluator appears to be operating in a ‘pipeline’ mode. This makes
interaction with users much more natural and also allows a program running on the evaluator to
be used in a UNIX pipe (UNIX is based on pipeline dataflow).

Nevertheless, the situation regarding interaction is not quite satisfactory. The behavior de-
scribed above is only a side effect of the design of a particular evaluator—it is not part of the
semantics of the language itself. The semantics of Lucid specify that the output of the square
program, given input 〈3, 6, 1, 5, . . .〉, must be 〈9, 36, 1, 25, . . .〉. The pLucid I/O convention specifies
that these numbers will be read in and printed out in that order. But neither the semantics nor
the I/O convention require that these inputs and outputs will be interleaved as desired.

It happens that a correct pLucid interpreter running the square program must behave as
desired. On the one hand, it cannot produce the square of a number until it actually knows the
number. This means that the output corresponding to a particular input must be produced after
the input. On the other hand, if the interpreter has read in a number (say 6) it cannot wait
forever before producing the corresponding output (36). The reason it cannot wait is that the
following input may never arrive—the pLucid I/O convention allows finite ‘nonterminating’ input.
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For example, if a user types 3, then 5, then 6, then drops dead (before he has a chance to close the
input stream), the input is deemed to be 〈3, 5, 6,⊥,⊥,⊥, . . .〉. The formal semantics specify that
the corresponding output must be 〈9, 25, 36,⊥,⊥,⊥, . . .〉. This means that the interpreter must
eventually produce the output (36) corresponding to the user’s last input. The interpreter cannot
spend eternity waiting for the next input item.

Unfortunately, this argument applies only to certain programs. In general, the Lucid time
parameter cannot be understood as counting the ticks of some global clock. The pLucid user who
has succeeded in producing an interactive program is, in a sense, just lucky.

Problems can, therefore, arise when the user’s luck runs out. Suppose we want to write
a program which reads in two numbers and outputs the sum of their squares. The program
x ∗ x + y ∗ y works fine. But suppose that we do not want to use the interpreter’s own prompting
system. Suppose instead we want to supply our own. We might näıvely expect

‘the number x please\n’ fby
‘the number y please\n’ fby
‘the sum of their squares is\n’ fby
x ** 2 + y ** 2 fby eod

to work, but we are in for a surprise. When run (without the interpreter’s prompts) it will
immediately output

the number x please
the number y please
the sum of their squares is

and then apparently hang up. It is waiting for us to type in x and y! Since the values of the
prompts do not depend on the input, they were produced immediately. Only when it attempts to
produce the fourth output item does it finally have to read any input.

This program can be patched up. The expression

if x eq x
then ‘the number y please\n’
else ‘ ’
fi

now depends on the value of x and the evaluator will be forced to read (and store) the value of x
before the second prompt appears. Nevertheless, this solution looks very dirty—far too dirty for a
supposedly “clean” nonprocedural language. What if more complicated forms of interaction were
required? Would these artificially induced dependencies become unmanageable? And what if we
needed assurance that a given interaction pattern would always result? Since the behavior is not
part of the semantics, there is no hope for a formal proof. On the contrary: our transformation
rules allow us to transform a program with artificial dependencies into the original one. After all,
they have the same meaning.

The problem becomes more acute when we try to write programs whose real-time behavior is
important. By this we mean programs in which the absolute rate of input or output is important,
not just the rate of input and output relative to each other. Here, even the interpreter falls down.
The evaluator, being lazy, postpones all computations as long as possible. As a result it often finds
itself in a situation in which it has accumulated a large debt of postponed computation which now
must be cleared. At that point the performance suddenly (though temporarily) deteriorates. For
example, the desk-calculator program will not do any actual calculations until a w command is
entered; then it must clear up its backlog. To the user it seems that addition and multiplication
are very simple operations which are performed immediately, but that output is for some reason
more time consuming. This kind of counter-intuitive behavior can be avoided with artificial
dependencies, but this solution is even less satisfactory than in the case of simple interaction.

The Mystics will argue that genuine “time” is an implementation concept and has no place in
the semantics of a language, which must be “abstract”. This is true as long as timing is part of
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performance and not part of correctness. Nevertheless, it cannot be denied that there are many
applications in which timing (relative or absolute) is part of the specification itself. For these
problems, timing refers to ends as well as means, and reference to genuine time in the program is
still abstract.

At first sight, it might seem that Lucid could be adapted for real-time applications. We
could tighten up the Lucid I/O convention and require that a correct implementation receive its
input and produce its output in step with a global clock. With this convention real time would
actually be part of the semantics. This proposal is not, however, very practical. It would mean
abandoning operations like whenever, which do not respect the central-clock interpretation of
the time parameter. It would mean complicated restrictions on user-defined functions. It would
probably mean abandoning nested iteration. There would not be much ‘normal’ Lucid left. For
real-time problems Lucid really is inherently unsuitable.

This does not, however, mean that the Cowboys are right after all. Lucid may be unsuitable,
but that does not mean that all nonprocedural languages are unsuitable. In fact, there is a simple
way to generalize the Lucid notion of history to handle genuine time. We introduce a new data
object which we use to ‘pad out’ ordinary Lucid histories to make Lucid time correspond to real
time. This object (called a “hiaton”, from “hiatus”, a pause) can be thought of as the output
of a process which at a particular point in time has no genuine data to send on. Using hiatonic
streams, operations like whenever can be made to work in real time again. For example the value
of n whenever isprime(n) might be

〈∗, 2, 3, ∗, 5, ∗, 7, ∗, ∗, ∗, 11, . . .〉

(with an asterisk representing the hiaton).
We cannot simply add the hiaton to the pLucid algebra in the same way the eod object was

added. Hiatons are not normally combined with data objects. For example, the addition operation
applied to the streams 〈∗, 5, ∗, ∗, 3, . . .〉 and 〈1, ∗, ∗, 2, 8, . . .〉 yields 〈∗, 6, ∗, ∗, 5, . . .〉. (The hiatons
make clear the way in which an addition filter ‘waits’ for both summands before it produces their
sum.)

Hiatonics seems to offer some hope of a nonprocedural dataflow approach to real time. In
particular the output of a first-come first-served merge node is now a function of its input. This
node can in turn play a vital role in applications such as resource allocation. At present, however
a hiaton based dataflow language has not even been specified, let alone implemented. It remains
to be seen if the hiaton will fulfill its promise and take its place beside ⊥ and eod .
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Chapter 6

Program Transformation

A program transformation rule is a rule which allows one to make changes in a program (usually,
small changes) which preserve the meaning of the program. The ‘meaning’ of a program is the role
which it performs when considered as a ‘black box’. It is the transformation which the program
applies to its input. In other words, the meaning of a program is its input–output function. If T
is a program to which a transformation is to be applied and T ′ is the modified program which
results, then T and T ′ produce the same output when given the same input. The two programs are
said to be equivalent. Of course, by ‘input’ and ‘output’ we mean the (histories of) the input and
output streams. Equivalent programs are, as ‘black-box’ filters, interchangeable. It is possible, of
course, that equivalent programs may perform differently—one may do its work more quickly, the
other might require more resources. As far as the end results, however, equivalent programs are
(from the ‘outside’) indistinguishable.

Every programmer uses the notion of input/output equivalence, at least informally. Programs
are continually being modified, often solely to improve their performance. Any modifications
to a working program would be expected not to alter the results; the modifications should be
equivalence-preserving transformations. Often, programmers will write code they know to be
inefficient, and expect to spend some time later improving the performance. Their strategy (a
common and effective one) is to first produce a ‘draft’ program which may be extremely slow but
is simple and obviously correct. Once the ‘quick and dirty’ version is running, it can always be
gradually transformed into a more efficient but still equivalent program. The alternate strategy,
of course, is to spend a great deal of time writing an efficient but incorrect program. Then
the programmer spends even more time debugging—making it more correct but maintaining the
performance. The first method has much to recommend it.

Naturally enough, even the best strategies are capable of producing programs with errors in
them. Correcting these errors involves making changes which are intended to change the meaning
of the program. Any program equivalent to an incorrect program is still incorrect! Nevertheless,
even while correcting errors, it is usually necessary to ensure that most of the output remains
unaltered. The concept of a ‘meaning-preserving’ change is certainly an extremely important one.

Most imperative programmers use only a very informal approach to the problem of program
modification. There are a few precise transformation rules which can be applied (for example,
renaming the dummy parameters of a procedure definition) but they are very rare. The existence
of side effects, pointers and aliasing (among other things) make it very difficult to isolate the
effects of even a very small change. For example, in PASCAL we cannot in general replace the
integer expression i + m(8) by m(8) + i because the function m may affect the value of i. Nor
can we reverse the order of the two apparently unrelated commands

x := a;

y := b;

because x may be another name for b!
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In Lucid, however (as in Iswim and most nonprocedural languages) the situation is much dif-
ferent. There are no side effects, pointers or aliasing. The expressions i+m(8) and m(8)+i always
yield the same value, and any two definitions in the body of a clause may be interchanged. The
reason, of course, is that Lucid is based on the notation of ordinary mathematics, the arithmetic
and other data operations are referentially transparent and the statements in a clause really are
equations. In Lucid it is possible to formulate a number of reasonably simple yet extremely pow-
erful transformation rules which take advantage of the situation. The rules allow us (for example)
to perform symbolic calculations on data, expand function calls, eliminate unnecessary definitions
and even collapse whole clauses to a single expression. These rules are even powerful enough
to allow us to symbolically ‘evaluate’ entire programs, by transforming them to expressions con-
sisting of a single constant. Most of these rules have their origins in the reduction rules of the
Lambda Calculus. Darlington and Burstall (1973) used similar rules as the basis of their program
transformation system, and others have extended this work.

The transformation rules are especially effective when used in conjunction with induction
principles (one example of which will be given in a later section). They make it possible to
transform one program into a totally different one, which computes its results by a completely
different method.

One especially attractive feature of transformation rules in general is that they require no
knowledge of any formal system other than the programming language itself. There is no need
for the programmer to learn a second, more complicated assertional ‘metalanguage’ for stating
properties of programs. Some of the rules require carefully stated restrictions concerning the
scope of variables, but scope is something a programmer must understand anyway.

6.1 The Basis Rule

We begin by considering the following simple program

2 + 2

to add two and two. There is, of course, an even simpler program to which the above is equivalent;
namely the program

4

It ought to be possible to transform the first into the second. The rule which allows us to carry
out this transformation is the basis rule.

Let A be an algebra, T be a Lucid(A) program and R = L be a ‘conventional’ equation in
which the terms R and L have no where clauses, and no variables used as functions. If the equation
is true in Lu(A) (in the sense of ordinary equational algebra), then any occurrence of R in T can
be replaced by L, provided the replacement does not introduce any new input (i.e., free) variables
in T .

Since the equation 2 + 2 = 4 is true in Lu(P ), we are allowed to transform the pLucid [i.e.,
Lucid(P )] program 2 + 2 into the pLucid program 4.

The equation referred to in the basis rule may involve terms with occurrences of variables.
Such an equation is true in an algebra if (and this is the convention of universal algebra) the
two sides have the same value for all values of the variables in question. For example, since the
equation

f ∗ (i + 1) = (i + 1) ∗ f
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is true in P , the Basis Rule allows us to transform the program

f asa i eq N
where

Nis current n;
i = 1 fby i + 1;
f = 1 fby f ∗ (i + 1);

end

into the program

f asa i eq N
where

N is current n;
i = 1 fby i + 1;
f = 1 fby (i + 1) ∗ f ;

end

In the same way the equations

if true then x else y fi = x

if false then x else y fi = y

can be used to ‘evaluate’ Boolean expressions. The question which immediately arises, of course,
is how do we know that a given equation is true of Lu(P )? There are a small number of important
equations such as

first(x fby y) = first x

next(x fby y) = y

first x fby next x = x

next(x + y) = next x + next y

that are true in Lu(A) for all A. These can be verified ‘in the metalanguage’, by directly referring
to the definition of Lu(A).

The truth of a much larger collection of equations follows from the Extension Principle: If an
equation has no occurrences of Lucid operators and is true in A, then it is also true in Lu(A). The
principle still leaves us with the problem of discovering equations true in A. This last problem,
however, has nothing to do with Lucid or with programming per se; the question is rather one of
formal reasoning about data types. We will not discuss this subject here except to point out that
equations true in A could be derived from an equational specification of A.

There is also an important generalization of the Extension Principle which gives us many useful
equations. The generalized Extension Principle guarantees the truth of any equation obtainable
from an equation true in Lu(A) by substituting arbitrary terms for variables. For example, the
equation

p + q = q + q

is true in Lu(P ) (because it is true in P ). By substituting the term x for p, and the term f(x− 1)
for q, we obtain the equation

x ∗ f(x− 1) = f(x− 1) ∗ x

Using this equation we can transform the program

f(N)
where

N is current n;
f(x) = if x < 1 then 1 else x ∗ f(x− 1) fi;

end
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into the program

f(N)
where

N is current n;
f(x) = if x < 1 then 1 else f(x− 1) ∗ x fi;

end

The equation in question cannot be derived directly using the Extension Principle because it
uses the variable f as a function; it is not an equation in the language of ordinary equational
algebra.

There is, unfortunately, one serious limitation to the use of the Basis Rule: the equations true
in the underlying algebra are not always those expected. For example, consider the Lucid(Z)
program

f(i)
where

f(x) = f(x)− f(x);
end

with Z being the algebra (described earlier) based on the integers. We might be tempted to use
the ‘obviously’ true equation

p− p = 0

derive

f(x)− f(x) = 0.

and transform our program to

f(i)
where

f(x) = 0;
end

which outputs a stream of 0’s. The transformation is incorrect; the original program does not
output anything at all. The flaw in the reasoning is assuming the correctness of the equation

p− p = 0

This equation is not true in Z, because it fails when p has the value ⊥. In general, the presence of
the extra partial objects in a continuous algebra can invalidate many supposedly natural equations
(especially those involving two or more occurrences of the same variable on one side).

6.2 The Substitution Rule

The Basis Rule discussed above is based on the principle that expressions in Lucid are referentially
transparent; it says that expressions having the same value can be interchanged. The Substitution
Rule is also based on this principle, and on the fact that the statements in a where clause really
are equations. The Substitution Rule says that (roughly speaking) occurrences of a variable can
be replaced by the relevant definition.

Consider, for example, the following simple program

x + y where x = 2; y = 2; end



6.2. THE SUBSTITUTION RULE 117

using a where clause. The subject of the where clause is the expression x + y, but it is obvious
that in this context both x and y have the value 2. We would expect, then, that the program
above is equivalent to

2 + 2 where x = 2; y = 2; end

(and our later rules will allow us to convert this, in turn, to 2 + 2).

The Substitution Rule allows us to do this.

The Substitution Rule: Let W be a where clause containing a definition of the form

V = E

with V a variable and E an expression. Then E may replace any free occurrence of V in the
subject of W , or in the right-hand side of a definition in the body of W , provided no name clashes
result.

This statement refers to two concepts, namely those of “free occurrences” and “name clash”,
that need to be explained.

A free occurrence of a variable in term is one which is not

(i) in the right-hand side of a definition in a where clause which has the variable as one of its
locals; or

(ii) in the right-hand side of a definition which has the variable as one of its formal parameters.

In other words, a free occurrence is one where the variable has its ‘outer’ meaning. For example,
in the term

f(next x + Y )
where

Y is current y − 1;
s = f(Y upon x > 0)
where

f(a) = a ∗ x + b;
end

x = a ∗ w − s;
w = a/b
where

b = 5 + x;
x = 5;

end

end

the occurrences of a on the line

f(a) = a ∗ x + b

are not free (i.e., they are bound) because here a is being used as a formal parameter. The other
two occurrences of a in the program, however, are free. The occurrence of b on the line just cited
is free; but its occurrence later in the expression

a/b

is not because b is a local of the clause of which this expression is the subject.
In the expression

f(next x + Y )
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which is the subject of the main clause, the occurrences of x and Y are not free. Both of these
variables are locals; x is defined in the body and Y is the subject (left-hand side) of an is current

declaration. The occurrence of f , however, is free. There is a definition of f inside the clause but
it is not ‘relevant’ to the above occurrence. The definitions in the body of a clause are relevant
only to occurrences of variables inside the clause. The occurrence of f in the expression

f(Y upon x > 0)

is therefore bound; here the definition

f(a) = a ∗ x + b;

is relevant. Finally, the occurrence of the variable y in the is current declaration is free; no
occurrence of a variable on the right-hand side of such a declaration is ever bound. The free
variables of this expression are therefore a, b, f and y.

The Substitution Rule allows us to replace free occurrences of a given variable by a given
expression. In these positions, the variable being replaced had its ‘outer’ meaning; we would
therefore expect that the new expression have its ‘outer’ meaning as well. Sometimes, however,
the new expression will be substituted into a context in which some of its free values become
bound. As a result, the expression as a whole no longer has its outer value. In this situation we
say that there is a clash of variables. There is a confusion between two different meanings of the
same symbol.

The body of the example term above contains the definition

x = a ∗ w − s;

We can therefore use the Substitution Rule to replace relevant occurrences of x by a ∗w + s. One
relevant occurrence is that in the subject of the main clause. If we perform the substitution, the
result is

f
(
next(a ∗ w − s) + Y

)
where

Y is current y − 1;
s = f(Y upon x > 0)
where

f(a) = a ∗ x + b;
end

x = a ∗ w − s;
w = a/b
where

b = 5 + x;
x = 5;

end

end

None of the variables in a ∗w + s are bound in the new context, and no clash of variables results.
This substitution is allowed.

The Substitution Rule would also allow us to substitute for the second relevant occurrence
of x, in the expression

f(Y upon x > 0)

There is one more relevant occurrence of x, namely, that in the definition

f(a) = a ∗ x + b;
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but the Substitution Rule does not allow the substitution to be performed. The problem is that a
name clash involving the variable a results. If we ignored the restrictions and substituted anyway,
the result would be the definition

f(a) = a ∗ (a ∗ w − s) + b;

This new definition, however, has a different meaning from the old one. The second occurrence
of a in the definition now refers to the argument of f , and not the ‘outer’ value of a. There is no
reason to expect that the transformed program will have the same meaning as the original.

There is, of course, one more occurrence of x in a subexpression, namely, that in the definition

b = 5 + x;

but this occurrence is not relevant to the definition

x = a ∗ w − s; .

It occurs inside a clause whose body contains a different definition of x (namely, x = 5;), and
innermost definitions always take precedence. We could, however, use the Substitution Rule with
this inner, relevant definition and replace the occurrence of x by 5. The resulting expression
would be

f
(
next(a ∗ w − s) + Y

)
where

Y is current y − 1;
s = f(Y upon x > 0)
where

f(a) = a ∗ x + b;
end

x = a ∗ w − s;
w = a/b
where

b = 5 + 5;
x = 5;

end

end

There is also a version of the substitution rule which can be applied to is current declarations.

The Declaration Substitution Rule: Let W be a where clause whose body contains a dec-
laration of the form

V is current E;

Any occurrence of V in the subject of W can be replaced by E, provided there are no clashes of
variables, and provided E occurs in a synchronic context.

The crucial concept here is that of a synchronic occurrence of a variable in a term. An
occurrence of a variable V in a term T is synchronic if it is not within the scope of one of the
special Lucid operations (such as first or whenever), or within the scope of a function variable
defined directly or indirectly using the Lucid operations.

The fact that an occurrence of V in T is synchronic means that the value of T at any time t
depends on the value of V at the same time t, and not on the value of V at any other time.
Synchronic contexts are therefore ‘transparent’ contexts, out of the range of any of the Lucid
‘time-bending’ operations.
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For example, in the term

(p asa i > N) + 3 ∗M
where

N is current next n;
M is current m;
i = 1 fby i + 1;
p = M fby p ∗M ;

end

the occurrence of M in the subject is in a synchronic context, but that of N is not. We are
therefore allowed to replace M by m, yielding

(p asa i > N) + 3 ∗m
where

N is current next n;
M is current m;
i = 1 fby i + 1;
p = M fby p ∗M ;

end

but may not replace N by next n.
Name clashes can occur with the Declaration Substitution Rule when a local of the clause

occurs free in E. For example, if the declaration of M were instead

M is current m + p;

then the substitution could not be performed. The problem is that the occurrence of p on the
right-hand side of the above declaration refers to the ‘outer’ value of p; but any occurrence of p
in the subject refers to its ‘inner’ value.

6.3 The Calling Rule

The Substitution Rule allows us to ‘apply’ the definition of an individual variable. There is a
similar rule (actually, a generalization), which, allows us to do the same for definitions of function
variables. Consider, for example, the program

sum(2, 3)
where

sum(x, y) = x + y;
end

It seems perfectly obvious that the definition of sum implies that the expression sum(2, 3) has the
same value as 2 + 3. We would reason as follows: the first argument of sum, which is called x
in the definition, is ‘actually’ 2, and the second argument, which is called y, is ‘actually’ 3. The
value of sum(2, 3) should therefore be that of the expression x + y, when 2 is substituted for x
and 3 is substituted for y. This reasoning is correct, and is formalized by the calling rule.

The Calling Rule: Let W be a clause containing a definition of the form

F (P0, P1, . . . , Pn−1) = E;

(F , a variable, P0, P1, P2, . . . , Pn−1 the formal parameters, E an expression). Then, any relevant
occurrence in the clause of an expression of the form

F (A0, A1, . . . , An−1)



6.3. THE CALLING RULE 121

can be replaced by E′, where E′ is the result of substituting (simultaneously) A0 for all occurrences
of P0 in E, A1 for all free occurrences of P1 in E, . . . , and An−1 for all free occurrences of Pn−1
in E. As before, these substitutions and the final replacement must not give rise to any clashes of
variables.

An expression of the form

F (A0, A1, . . . , An−1)

can be thought of as a ‘call’ of the function F (hence the name of the rule) with actual parameters
A0, A1, . . . , An−1. The rule says that such a ‘call’ to F can be replaced by the ‘body’ of the
definition of F , with the actual parameters substituted for the formal parameters. In the simple
example given above, the Calling Rule allows us to replace the occurrence of sum(2, 3) by the
result of substituting 2 for x and 3 for y in x + y; in other words it allows us to replace sum(2, 3)
by 2 + 3, as desired.

The notion of a ‘relevant’ call is defined in almost the same way as with the Substitution
Rule given earlier. The calls relevant to a definition are those appearing in the subject or in the
right-hand side of a definition in the body, provided there is no ‘intervening’ definition in some
subclause. For example, in the expression

h(x) + f(y)
where

x = y ∗ g + 5
where

g = p− f(q ∗ a + y);
q = k(3, z);
k(a, b) = a ∗ a + f(b ∗ b);

end

y = f(u)− u
where

f(d) = d ∗ d− 5;
u = 135;

end

f(t) = (t− a) ∗ (t + y);
end

the ‘calls’ f(y), f(q ∗ a + y) and f(b ∗ b) are all relevant to the definition

f(t) = (t− a) ∗ (t + y);

but the call f(u) is not. The definition relevant to this last call is

f(d) = d ∗ d− 5;

because (as before) the innermost definition has precedence.
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The Calling Rule allows us to ‘expand’ the first two calls, so that the resulting term will be

h(x) + (y − a) ∗ (y + y)
where

x = y ∗ g + 5
where

g = p−
(
(q ∗ a + y)− a

)
∗
(
(q ∗ a + y) + y

)
;

q = k(3, z);
k(a, b) = a ∗ a + f(b ∗ b);

end

y = f(u)− u
where

f(d) = d ∗ d− 5;
u = 135;

end

f(t) = (t− 2) ∗ (1 + y);
end

Any attempt to expand the third call (f(b ∗ b)), however, will result in a clash of variables.
The definition

k(a, b) = a ∗ a + f(b ∗ b)

would become

k(a, b) = a ∗ a +
(
(b ∗ b)− 2

)
∗
(
(b ∗ b) + y

)
;

and now the meaning has been changed. The variable a which occurs as a ‘global’ of the definition
of f has been introduced into a context in which it is also being used as a formal parameter. The
proper, ‘outer’ value is no longer available.

Individual examples of the ‘clash of variables’ are usually easy to understand—once they have
been pointed out. It is much harder for the unaided programmer to detect clashes in a moderately
complicated program. Fortunately, it is not too difficult to formulate the precise regulations
regarding permissible substitutions, and these rules can be easily implemented as a checking
program. A programmer using the transformation rules would indicate to the program which
call is to be expanded. The transformation program would check that no clashes would occur,
perform the expansion if it passed the check, otherwise it would tell the programmer exactly where
the clash takes place. Programmers could therefore have absolute confidence in the correctness
of their transformations, even if they themselves do not have a perfect grasp of the subtleties
involved in the various restrictions on the transformation rules. (On the other hand, the people
who implement the checking/transforming package must have a very good understanding of the
rules. They would need a more detailed specification than that provided here.)

6.4 The Renaming Rules

The formal parameters of a function definition are sometimes called ‘dummy’ variables. The reason
for this is that the choice of which variable to use is (almost) of no importance. These variables
are just ‘dummies’ which stand in for the actual parameters of a call. The use of a variable like x
as a formal parameter does not involve any reference to any value which x may have in the context
of the definition. The following rule captures this idea by permitting us to change these variables.

The Formal Parameter Renaming Rule: Let

F (V0, V1, . . . , Vn−1) = E;
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be a definition appearing in the body of a where clause and let U0, U1, . . . , Un−1 be a new sequence
of distinct variables. Then the above definition can be replaced by

F (U0, U1, . . . , Un−1) = E′;

where E′ is the result of (simultaneously) replacing each free occurrence in E of any Vi with the
corresponding Ui, provided no clashes of variables result.

With this rule, clashes could arise if one of the Us is substituted into a context in which it is
bound.

This rule could, for example, be used on the term given earlier to transform the definition

k(a, b) = a ∗ a + f(b ∗ b);

into the definition

k(n,m) = n ∗ n + f(m ∗m);

and this change would allow us to apply the Calling Rule to the call of f .
There is a similar rule, the Local Variable Renaming Rule, for changing the local variables

(those which are defined or declared) in a where clause.

6.5 The Addition and Elimination Rules

It should be apparent that repeated use of the Substitution and Calling Rules may sometimes
result in the complete elimination of relevant occurrences of the variable in question. In such
a case the definition which was used becomes ‘redundant’. The Elimination Rule allows us to
eliminate such redundant definitions.

The Definition Elimination Rule: Let W be a where clause and D a definition or declaration
in the body of W which defines or declares a variable V . If V does not occur free in the subject
of W or in any definition in the body of W , then W may be replaced by the clause W ′ formed by
removing D from the body of W .

We have already seen that using the renaming mles allowed us to expand all three calls of f
in the term given earlier, yielding

h(x) + (y − a) ∗ (y + y)
where

x = y ∗ g + 5
where

g = p−
(
(q ∗ a + y)− a

)
∗
(
(q ∗ a + y) + y

)
;

q = k(3, z);
k(m,n) = m ∗m +

(
(n ∗ n)− a

)
∗
(
(n ∗ n) + z

)
;

end

y = f(u)− u
where

f(d) = d ∗ d− 5;
u = 135;

end

f(t) = (t− a) ∗ (t + z);
end

The Elimination Rule allows us to eliminate the (now useless) definition

f(t) = (t− a) ∗ (t + z);
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and transform the above into

h(x) + (y − a) ∗ (y + y)
where

x = y ∗ g + 5
where

g = p−
(
(q ∗ a + y)− a

)
∗
(
(q ∗ a + y) + y

)
;

q = k(3, z);
k(m,n) = m ∗m +

(
(n ∗ n)− a

)
∗
(
(n ∗ n) + z

)
;

end

y = f(u)− u
where

f(d) = d ∗ d− 5;
u = 135;

end

end

It should be apparent that a function definition can be expanded out of a program in this way
only if it is nonrecursive, i.e., only if the function is not defined in terms of itself either directly
or indirectly. If a program has no recursive function definitions, then all function definitions can
eventually be removed. Among other things, this means that an implementation of Lucid without
functions can be converted into an implementation of a slightly extended language in which at
least nonrecursive definitions are allowed. We just add a front-end to the existing implementation.
The new front-end expands all the calls to the functions, then hands the resulting program over
to the existing implementation.

The Elimination Rule, like all of the transformation rules, can be applied in reverse. The inverse
rule (which we will call the Addition Rule) says that any definition can be added to the body of
the clause, provided there are (in the subject or the other definitions) no relevant occurrences of
the variable being defined, and provided the variable is not already a local of the clause. Once
the definition is added, we can use the Calling Rule in reverse and introduce some calls to the
function. This process could be thought of as increasing the ‘modularity’ of the program. Suppose,
for example, that a clause contains the expressions x ** 2 + b ∗ x+ c, (x+ 1) ** 2 + b ∗ (x+ 1) + c,
and (y − z) ** 2 + b ∗ (y − z) + c. We could introduce the function definition

f(v) = v ** 2 + b ∗ v + c;

and replace the three expressions by f(x), f(x + 1) and f(x− y). The restrictions on the Calling
Rule (which still must hold when the rule is used in reverse) ensure that b and c have the same
meanings in the three expressions as they do in the new definition.

6.6 The Amalgamation Rule

The determined use of the elimination rules can very often produce where clauses with empty
bodies. As a simple example, the expression

sum(3, 5)
where

sum(x, y) = x + y;
end

can be transformed to

3 + 5
where

sum(x, y) = x + y;
end
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using the calling rule, and then to

3 + 5
where

end

with the Elimination Rule. It seems only natural that we should be able to discard the useless
where and end. This is in fact the case, and it follows as a special instance of a far more general
rule which allows us to combine separate where clauses.

The Amalgamation Rule: Let E(W,W ′,W ′′, . . .) be an expression in which occur the where

clauses W , W ′, W ′′, . . . , with subjects S, S′, S′′, . . . , and bodies B, B′, B′′, . . . . Then
E(W,W ′,W ′′, . . .) can be replaced by the clause

E(S, S′, S′′, . . .)
where

B
B′

B′′

· · ·
end

(i.e., the result of replacing each of the where clauses by its subject, and making the resulting
expression the subject of a where clause whose body is the result of merging the bodies of the
separate where clauses).

As usual, restrictions on this rule are required to prevent name clashes. With the Amalga-
mation Rule it is necessary to ensure that the bodies of the various clauses are compatible (no
variable is a local of more than one clause) and that no local of any of the clauses appears free in
E(W,W ′,W ′′, . . .).

The Amalgamation Rule could, for example, be used to transform(
g(a) ∗ x where g(u) = u ∗ 5; x = p− q; end

)
+

f
(
b ∗ Z where Z is current z; b = p + q; end

)
to

g(a) ∗ x + f(b ∗ Z)
where

Z is current z;
g(u) = u ∗ 5;
x = p− q;
b = p + q;

end

This transformation would not, however, be possible if in the first where clause x were renamed
to Z (the clauses would then share a local) or if g were renamed to f (f appears free in the original
expression as a whole).

The rule which allows us to change

E where end

into E is a special case of the reverse of the Amalgamation Rule, one in which the list of where
clauses is empty.
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6.7 The Import and Export Rules

The block structuring of Iswim (and Lucid) allows a certain amount of ‘information hiding’.
Definitions of variables or functions which are used only in a certain expression can be placed in
the body of a where clause whose subject is the expression in question. They do not have to be
included at the ‘main’ level.

For example, in the following program to reverse lists

rev(L)
where

rev(x) = if x eq [ ] then [ ] else app
(
hd(x), rev(tl(x))

)
fi

where

app(a,m) = if m eq [ ] then [% a %] else hd(m) :: app
(
a, tl(m)

)
fi;

end

end

the definition of app does not have to be included in the body of the main where clause on the same
level as the definition of rev . (In the LISP analog of this program, no such hiding is possible—in
LISP all definitions appear on the same level.)

However, the program might well have been written in LISP style as

rev(L)
where

rev(x) = if x eq [ ] then [ ] else app
(
hd(x), rev(tl(x))

)
fi;

app(a,m) = if m eq [ ] then [% a %] else hd(m) :: app
(
a, tl(m)

)
fi

end

and it is not hard to see that the two programs are equivalent. To be able to transform the one
into the other, however, we need a rule which allows us to ‘import’ and ‘export’ definitions across
a clause boundary.

The Definition Import Rule: Any definition in the body of a where clause can be added to
the body of any subclause appearing in the subject or in the right-hand side of any definition in
its body, provided no clash of variables results.

To avoid clashes with this rule we must check that the variable defined is not already a local
of the subclause, that free variables of the definition do not become bound in the subclause and
that all free occurrences of this variable in the subclause are relevant to the original definition. In
other words, the subclause must not appear in a context in which the variable delined is bound
(unless it is bound by the original definition, i.e., the subclause is within the original definition).

In the example given above, we can take the second form of the program and use the Amalga-
mation Rule in reverse on the right-hand side of the definition of rev to get

rev(L)
where

rev(x) = if x eq [ ] then [ ] else app
(
hd(x), rev(tl(x))

)
fi

where

end

app(a,m) = if m eq [ ] then [% a %] else hd(m) :: app
(
a, tl(m)

)
fi;

end

Then we use the Import Rule to add a ‘copy’ of the definition of app to the empty where body.
Finally, since app no longer occurs free in the definition of rev or in the subject of the main clause,
we can use the Elimination Rule to remove the definition of app from the body of the main clause.
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In the following simple expression

a = x ∗ b
where

a = p + q;
b = p− w;
c = j + k;
x = f(z)
where

f(b, q) = b + q
where

q = z + c;
c = 3;

end

end

end

the definitions of a, b and c cannot be moved into the innermost where clause. That of a cannot
be moved because q is redefined in the inner clause; that of b cannot, because b is bound (as a
formal parameter) in the inner clause; and that of c cannot be moved because c is a local of the
inner clause.

There is also a comparable rule for importing and exporting declarations.

6.8 The Parameter Insertion and Deletion Rules

The reader has probably noticed something slightly strange about the definition

app(a,m) = if m eq [ ] then [% 3 %]

else hd(m) :: app
(
a, tl(m)

)
fi;

for the function app. The strange things is the way in which the function ‘calls’ itself: in the
recursive subcall, the first argument is the same as in the original call. This first parameter is
actually being used to ‘drag around’ a particular value from one call to the next.

This phenomenon (‘baggage’ parameters) is very common in languages like LISP and PRO-
LOG, which have no scope structure and do not allow nested function definitions. The same
problem arises in Iswim and Lucid if we write in the style of LISP, with all our function definitions
on the same level. However, if we use Lucid’s (i.e., Iswim’s) facility for nested definitions, these
values can appear as globals of the function definition and do not have to be passed around in
parameter lists. We can rewrite the reversing program as

rev(L)
where

rev(x) = if x eq [ ] then [ ] else app
(
rev(tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

end

Now the expression hd(x), which before was being passed around as a parameter, appears in the
definition of app. The variable x is a global (free) variable of this definition, but is at the same
time a formal parameter of an enclosing definition. Variables used in this way are called dynamic
free variables. Both PASCAL and Lucid allow dynamic free variables, but some languages (such
as C) rule them out because they cause implementation difficulties.
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There are no semantic difficulties with such variables in Lucid, and they can be very useful in
helping the programmer avoid long parameter lists. Using the transformation rules given so far,
however, it is not possible to perform the transformation described above which eliminates the
extra parameters. We need two more rules designed for this purpose.

The first rule can be thought of as a ‘backwards’ form of the calling rule, in which an actual
parameter is introduced into the definition of a function.

The Actual Substitution Rule: Let W be a where clause containing a definition of the form

F (P0, P1, . . . , Pn−1) = E;

Suppose that in every relevant call to F , the actual parameter corresponding to the formal param-
eter Pi is the expression A or (inside E) the same formal parameter itself. Then the expression E
can be replaced by the expression E′ which results when all free occurrences of Pi are replaced
by A.

As always, there are restrictions necessary to avoid errors connected with the binding of vari-
ables. With this rule it is necessary to ensure that (i) the substitution does not result in variable
clashes, and that (ii) the free variables of A have the same bindings in their different occurrences
as actuals.

For example, applying this rule in the original reverse program, we see that hd(x) is the
only expression appearing as a first actual parameter of app other than a itself. Furthermore,
the expression hd(x) has the same meaning (x is bound the same way) inside and outside the
definition. Therefore, we can rewrite the definition of app as

app(a,m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
hd(x), tl(m)

)
fi;

The formal parameter a is now useless, and our second rule allows us to eliminate it.

The Parameter Deletion Rule: Let W be a clause which contains a definition of the form

F (P0, P1, P2, . . .) = E;

Suppose that the formal parameter Pi does not occur free in E. Then this parameter can be deleted
from the formal parameter list in the definition list and the corresponding actual parameters can
be deleted from all relevant calls to F .

For once there are no restrictions regarding bindings of variables.
This rule can now be used to eliminate the first parameter in the definition of app above and

give us the desired simplified program.
It should be apparent that there are a number of other rules which could be formulated (say, for

permuting the order of parameters) and that some of the rules could be formulated differently (we
could have combined the last two). Others could be either restricted or generalized. The reader
may well be a little worried by the large number of rules and by the difficulty in formulating
them precisely with a complete set of restrictions. After all, these restrictions are apparently too
complicated to be presented in full even in a full-length book devoted to Lucid!

Fortunately, the situation is not as bleak as it may seem. It is in fact true that average
programmers, even ones with training in logic, would find it almost impossible to keep in their
heads a precise formulation of the rules with all the restrictions. It is also true, however, that
there is no need for them to do so. The rules and all the algorithms for checking of bindings can
be implemented in a ‘verifier’s assistant’ program. The verifiers themselves need only have a more
informal understanding of the kinds of changes that are possible. To transform one program into
another, the human verifier would break the transformation down into a series of small, plausible
steps, and ask the ‘assistant’ to check that the steps can be done. The assistant would try to select
an appropriate rule from its database, then check that (say) no clashes of variables result, then
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report to its human master that everything is all right. Of course the assistant will sometimes
report that a transformation is disallowed because of such-and-such a clash of bindings. It will
sometimes even be forced to report to its master that it can find no way to check out a given
step—in which case the human must try something simpler. In any case there is no need for the
human to have a complete, detailed, and precise knowledge of dozens of rules with complicated
restrictions. It is enough to understand the rules at roughly the informal level at which they have
been presented in this section.

6.9 Symbolic Evaluation

The rules given above fall far short of being complete in the sense that they enable us to transform
any two equivalent programs into each other. There are (as we shall in the next section) very
simple examples of equivalent programs which perform their computations in very different ways
and cannot be transformed into each other by the rules given above.

There is, however, a weaker but still important sense in which the rules are “complete”—at
least for some members of the Iswim and Lucid families. The transformation rules given are
powerful enough to allow us to ‘compute’ the output of a given program, by reducing it to simple
expressions whose value is ‘known’.

This notion of completeness is easiest to state in the case of Iswim(A) with A an algebra which
(like P ) has a constant for every element of its universe (other than ⊥), and which has only one
partial object, namely ⊥ itself. In this case any Iswim(A) program which terminates (does not
have ⊥ as its value) can be reduced, using the transformation rules given, to an equivalent program
consisting of a constant. For these members of the Iswim family (at least), the transformation
rules completely specify the semantics.

It is not hard at all to see why this must be true. To ‘evaluate’ a program using the transfor-
mation rules we repeatedly use the Calling Rule to expand function computations. The various
renaming rules are used to allow the Calling Rule to be applied in situations where a clash of
variables would otherwise result. The Basis Rule is used to perform the actual computations (e.g.,
replacing 2 + 2 by 4), and the Elimination Rules are used to discard definitions and clauses which
are no longer needed. If the output (value) of a program (involving integers) is, say, 3, then there
will exist a strategy for transforming the original program into the program 3.

We must emphasize that we are not proposing symbolic evaluation as a practical technique for
implementing programs. The pLucid interpreter is based on entirely different principles. After
the ‘compiling’ phase is finished, the actual evaluation proceeds without making any changes
to the program being evaluated. In this section we want to show only that in principle the
transformation rules can be used to obtain the value of any program. It is very important to know
that this is possible, if only in principle, because it means that these rules by themselves determine
the semantics of the language.

Consider, for example, the pIswim [i.e., Iswim(P )] program

rev
(
[1 2]

)
where

rev(x) = if x eq [ ] then [ ] else app
(
rev(tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

end

We begin the evaluation by applying the Calling Rule to the call of rev in the subject; this gives
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the expression

if [1 2] eq [ ] then [ ] else app
(
rev
(
tl([1 2])

))
fi

where

app(m) = if m eq [ ] then [% hd
(
[1 2]

)
%]

else hd(m) :: app
(
tl(m)

)
fi;

end

where

rev(x) = if x eq [ ] then [ ] else app
(
rev(tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

end

The Basis Rule allows us to replace rev [1 2] eq [ ] by false and therefore also the whole top
if–then–else by its ‘false’ alternative. We can use the Basis Rule some more to ‘clean up’
expressions such as [% hd([1 2]) %], and this gives us the expression

app
(
rev([2])

)
where

app(m) = if m eq [ ] then [1] else hd(m) :: app
(
tl(m)

)
fi;

end

where

rev(x) = if x eq [ ] then [ ] else app
(
rev(tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi

end

end

Next, we apply the Calling Rule to the call rev([2]) at the top, and, after some similar applications
of the Basis Rule, the whole expression is

app
(
app

(
rev([ ])

)
where

app(m) = if m eq [ ] then [2]
else hd(m) :: app

(
tl(m)

)
fi;

end
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

where

rev(x) = if x eq [ ] then [ ] else app
(
rev(tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

end
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The expression rev([ ]) now gets our attention. Using the Calling Rule it expands to

if [ ] eq [ ] then [ ] else app
(
rev
(
tl([ ])

))
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

but the Basis Rule allows us to reduce this immediately to

[ ]
where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

The Definition Elimination Rule allows us to transform this expression into

[ ]
where

end

and using the Amalgamation Rule in reverse we obtain [ ].
The main expression has now become

app
(
app([ ])
where

app(m) = if m eq [ ] then [2]
else hd(m) :: app

(
tl(m)

)
fi;

end
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

where

rev(x) = if x eq [ ] then [ ] else app(rev
(
tl(x))

)
fi

where

app(m) = if m eq [ ] then [% hd(x) %]
else hd(m) :: app

(
tl(m)

)
fi;

end

end

At this point we could expand the expression app([ ]), but, before we do, We will use the
Elimination Rules again to simplify the whole expression. The expression as a whole is a where

clause whose body has only one definition, that of rev . There are no longer any calls to the
function rev other than those occurring in its own definition. This definition can therefore be
discarded. Furthermore, since this definition is the only one in the clause in which it occurs, we
can replace the whole clause by its subject, namely the expression

app
(
app

(
[ ]
)

where

app(m) = if m eq [ ] then [2]
else hd(m) :: app

(
tl(m)

)
fi;

end
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end
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Now we can expand the expression app([ ]). Using the Calling Rule again, we get

app
(
if [ ] eq [ ] then [2]
else hd

(
[ ]
)

:: app
(
tl([ ])

)
fi

where

app(m) = if m eq [ ] then [2]
else hd(m) :: app

(
tl(m)

)
fi;

end)
where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

(Notice that the inner definition was the relevant one.) The Basis Rule allows us to reduce the
substituted expression to [2] and the resulting ‘working expression’ becomes

app
(
[2]
where

app(m) = if m eq [ ] then [2]
else hd(m) :: app

(
tl(m)

)
fi;

end
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

and with the Elimination Rules it becomes

app
(
[2]
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

This can be transformed to

if [2] eq [ ] then [1]
else hd([2]) :: app

(
tl([2])

)
fi

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

using the Calling Rule; then it can be transformed to

2 :: app
(
[ ]
)

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

using the Basis Rule; and then to

2 :: if [ ] eq [ ] then [1]
else hd

(
[ ]
)

:: app
(
tl([ ])

)
fi

where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end
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using the Calling Rule, to

[2 1]
where

app(m) = if m eq [ ] then [1]
else hd(m) :: app

(
tl(m)

)
fi;

end

using the Basis Rule; and finally to

[2 1]

using Elimination Rules. We can easily extend our notion of symbolic evaluation to handle pro-
grams with input variables. Before beginning the evaluation, we replace all free occurrences of the
input variables by constants denoting the corresponding inputs.

6.10 The Symbolic Evaluation of Iterative Programs

The transformation rules can also be used to ‘evaluate’ iterative programs using the special Lucid
operators. Consider, for example, the following iterative program

f asa i eq 3
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

The first step is to use the Basis Rule and the appropriate instance of the equation

x asa p = if first p then first x
else next x asa next p fi

to transform the program into

if first i eq 3 then first f
else next f asa next i eq 3 fi

where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

Next, we use the Substitution Rule to replace the first occurrence of i by 1 fby i + i, giving

if first(1 fby i + 1) eq 3 then f
else next f asa next i eq 3 fi

where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

We then use the Basis Rule, again with the equation

first(1 fby i + 1) = 1
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and our program becomes

if 1 eq 3 then first 1
else next f asa next i eq 3 fi

where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

Using the equation

1 eq 3 = false

and those for if–then–else, it all reduces to

next f asa next i eq 3
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

For the next step in our symbolic iteration, we again apply the asa equation and replace the first
occurrence of i by its definition. This gives

if first next i eq 3 then first next f
else next next f asa next next i eq 3 fi

where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

The symbolic evaluation of the test involves the computation of first next i, i.e., of the
second (time-1) value of i. First we substitute the expression 1 fby i + 1 for i, and (as before)
apply the Basis Rule with the equation

next(1 fby i + 1) = i + 1

This gives us the expression first (i + 1). We now apply the Basis Rule with the equations

first (i + 1) = first i + first 1

first 1 = 1

and we obtain the expression first i+1. This in turn can be transformed to first (1 fby i+1)+1,
which becomes first 1 + 1, then 1 + 1 and finally 2 (using the Substitution and Basis Rules).
The original expression is therefore now:

if 2 eq 3 then first next f
else next next f asa next next i eq 3 fi

where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

and this is quickly transformed to

next next f asa next next i eq 3
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end
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On the next step in our symbolic iteration the subject of the clause becomes

if first next next i eq 3
then first next next f
else next next next f asa next next i eq 3 fi

but this time the symbolic evaluation of first next next i yields 3. The subject therefore reduces
to the expression first next next F , and this in turn can be transformed to 6. After discarding
the where clause we obtain 6 as the final answer.

The above program, however, was not typical of Lucid programs in general—its value was con-
stant in time (namely, constantly 6) and so the whole program could be reduced to one consisting
of the numeral 6. In general, though, the output of Lucid programs is not constant, and so the
program cannot be rewritten in such a simple form. Most Lucid programs, such as

i
where

i = 1 fby i + 1;
end

produce an infinite number of different data values in the course of their lifetimes. A program
like the above cannot possibly be equivalent to any expression involving only constants, and no
variables. It is therefore not possible in general to symbolically evaluate a Lucid program in exactly
the same way in which pIswim (for example) can be evaluated. The same is true of any member
of the Iswim family (including HyperpIswim) based on an algebra of infinite data objects.

There is, however, still one sense in which it is possible to symbolically evaluate an arbitrary
Lucid program. Suppose that T is a program and that t is a time. The expression

first next next · · · next T

(with t next’s after the first) denotes the value of the program at time t. If this value is a ‘healthy’
object (i.e., is not ⊥), we can use the transformation rules to reduce the above expression to one
consisting of a constant denoting the value in question. Consider, for example, the program

f
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

which produces the stream 1, 2, 6, 24, 120, . . . of all factorials. The time-4 output of this function
is 120, a fact which can be verified symbolically by transforming the expression

first next next next next f
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

into 120 (we will not give the details).

Another way of formulating this idea is as follows: If the value of program T at time t is v
(v not ⊥), then T can be transformed into an expression of the form

E0 fby E1 fby · · · fby Et−1 fby c fby Et+1
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where c is a constant denoting v. For example, we can transform the above program into

1 fby 2 fby 6 fby 24 fby 120 fby

next next next next next (f
where

i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end)

The notion of evaluation given above applies to programs with input as well. Suppose that a
program T with input variable V has output v at time t whenever the input values of V at times

r0, r1, r2, . . . , rk−1

are

w0, w1, w2, . . . , wk−1

respectively. Let H be an expression of the form

G0 fby G1 fby · · · fby Grk−1−1 fby Grk−1

in which each Gri is a constant denoting wi, but the other Gj are distinct variables not occurring
in T . Let T ′ be the result of substituting H for all free occurrences of V in T . Then the
transformation rules can be used to transform T ′ to an expression of the form

E0 fby E1 fby · · · fby Et−1 fby c fby Et+1

In other words, we can use symbolic methods to verify that any particular finite amount of infor-
mation about the input determines a corresponding particular finite amount of information about
the output. Since the input/output function of a Lucid program is computable, the collection of
all such finite relationships determines the input/output function as a whole.

Of course neither of these versions of the notion of ‘evaluation’ applies to a member of the
Lucid family based on an algebra which already has infinite objects in it. We would have to
reformulate it again, and use symbolic methods to derive finite amounts of information about
particular output values.

6.11 Binding and Calling Conventions

The transformation rules can also be used to answer questions about ‘calling conventions’ for
parameters of functions and about the binding of global variables. With imperative languages
these issues are usually discussed in operational terms, and the conventions chosen seem somewhat
arbitrary. In Lucid (and Iswim) the answers to these questions are already determined by the
transformation rules, and so any other choice regarding calling or binding conventions would
invalidate some of the rules.

Consider first the program

r
where

a = 3;
f(x) = x + a;
r = s
where

a = 5;
s = f(1);

end

end
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The question is, should the output of this (pIswim) program be 4 or 6? The function f is defined
in a context in which the value of a is 3, but it is used (called) in a context in which the value
is 5. Which value applies? If the defining context is the relevant one, the language is said to use
static binding. If the calling context is the determining one, the language is said to use dynamic
binding (LISP and POP-2 use dynamic binding, PASCAL uses static binding).

We can use our transformation rules to show almost immediately that binding in Iswim and
Lucid must be static. One way to do this is to apply the substitution rule to the occurrence of a
in the definition of f . The relevant definition is a = 3, so that the occurrence of a is replaced by 3,
and the program becomes

r
where

a = 3;
f(x) = x + 3;
r = s
where

a = 5;
s = f(1);

end

end

The output of this program is clearly 4.
Another way to see this is to use the Local Variable Renaming Rule inside the inner where

clause, and systematically replace a by b. The result is the program

r
where

a = 3;
f(x) = x + a;
r = s
where

b = 5;
s = f(1);

end

end

and again the output is clearly 4.
Finally, we could use the Definition Elimination Rule in the inner clause and discard the

definition of a—there are no occurrences of a in this clause for which this definition is the relevant
one. The result is again a program whose output is clearly 4.

We can conclude, then, that introducing dynamic binding into Iswim and Lucid would mean
losing the Substitution, Renaming and Local Variable Elimination Rules (at least). Dynamic
binding is inconsistent with the interpretation of Iswim definitions as equations.

Now consider the (slightly mysterious) program

f(3, 5)
where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

The question is not which of two numbers will be output (0 is the only candidate). The question
is whether or not there will be any output at all.

A PASCAL programmer would expect that this program would give rise to unending (nonter-
minating) computation. This is certainly what will happen when we run the analogous PASCAL
program:
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program test(input, output);

function f(x, y : integer) : integer;

begin

if x = 0 then

f := 0

else

f := f(x-1, f(x, y+1))

end;

begin

writeln(f(3, 5))

end

The call f(3, 5) will give rise to the call f(3, 6), which will in turn give rise to the call f(3, 7)

and so on indefinitely. The write statement will never be executed.
In Iswim and Lucid, however, the denotational semantics requires that the output be 0—

and this is the value produced by a pIswim implementation and (over and over) by the Lucid
interpreter. It might not be obvious how this result is produced; but it is very easy, using our
transformation rules, to see why 0 must be the output. We can simply use the Calling and Basis
Rules to evaluate the program. The first application of the Calling Rule gives

if 3 < 1 then 0 else f
(
3− 1, f(3, 5 + 1)

)
fi

where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

and a little Basis Rule calculation simplifies this to

f
(
2, f(3, 6)

)
where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

At this point we could apply the Calling Rule to the call f(3, 6); but we do not have to. Instead, we
apply the Calling Rule to the outer call of f , the one whose actual parameters are 2 and f(3, 6).
(The Calling Rule does not require that the actual parameters be constants.) The resulting
program is

if 2 < 1 then 0 else f
(
2− 1, f

(
2, f(3, 6) + 1

))
fi

where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

which after cleaning up becomes

f
(
1, f
(
2, f(3, 6) + 1

))
where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

Continuing in this way we obtain

f
(
0, f
(
1, f(2, f(3, 6) + 1)

)
+ 1
)

where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end
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One more application of the Calling Rule (to the outer call, as always) gives

if 0 < 1 then 0
else f

(
0− 1, f

(
0, f(1, f(2, f(3, 6) + 1)) + 1

)
+ 1
)
fi

where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

This time, however, the Basis Rule gives us

0
where

f(x, y) = if x < 1 then 0 else f
(
x− 1, f(x, y + 1)

)
fi;

end

which quickly reduces to 0.

The reason that the PASCAL program never produces any output is that parameters of func-
tions are called by value. This means that PASCAL attempts to evaluate all the actual parameters
before ‘entering’ the body of the function, even if some of these values are not actually needed.
PASCAL attempts to perform unnecessary computations, and if these unnecessary computations
never terminate, no value will ever be produced.

The interpreters for PIFL and Lucid, however, do not attempt to evaluate any expression until
it is certain that the result will be needed. When processing a function call, evaluation of the
function body begins immediately and actual parameters are evaluated only when the evaluation
of the body requires these values. This is call by need (sometimes called call by name). A call-by-
value implementation of Iswim or Lucid would only be partially correct: any actual output which
appears would be the right output, but the implementation might sometimes fail to deliver output
specified by the denotational semantics and the transformation rules. Call-by-value is inconsistent
with the Calling Rule; it corresponds to a more restricted version of this rule in which the actual
parameters of the call are required to be constants.

6.12 Proving Assertions about Programs

The program transformation rules given in the last chapter allow only a very limited kind of formal
reasoning about programs. We cannot use these rules to derive true assertions about programs
(except assertions to the effect that a transformed program is equivalent to the original). In
particular, we cannot prove that a given program is correct in that it corresponds to a specification
written in some logical language.

The simplest way to permit reasoning about Lucid(A) programs is to take some formal logical
system and allow Lucid expressions to appear as terms. One of the simplest choices is the second-
order language L whose individual variables are the nullary Lucid variables and whose operation
symbols are taken from the signature of A. (The language L is second order because it allows
function variables.) We could generalize L to the language L∗ by allowing any Lucid(A) term to
appear in a formula anywhere an ordinary term is permitted. In this extended logic, assertions
about programs are assertions about the values of programs, and are just formulas in which the
program appears. For example, the fact that the pLucid program

fac(n)
where

fac(x) = if x eq 1 then 1 else x ∗ fac(x− 1) fi;
end
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calculates the factorial of n might be formulated as

forall n :
(
integer(n) and n >= 1⇒
n! =

(
fac(n)
where

fac(x) = if x eq 1 then 1 else x ∗ fac(x− 1) fi;
end
))

Notice that the assertion uses primitives (such as the symbol ! for factorial, the quantifier forall
and the logical connective ⇒), which are not available in pLucid. We have used a hypothetical
linear representation of the logical symbols in the ordinary character set. Program equivalence
statements can be expressed as equations between programs, with the input variables universally
quantified.

This does allow reasoning about programs, but only about programs as terms. In other words,
we can make statements only about the output of the program—and not about the internal values
of variables. For example, given the program

f asa i eq N
where

N is current n;
i = 1 fby i + 1;
f = 1 fby f ∗ next i;

end

it is only natural to observe that the value of f is always the factorial of the value of i. This
statement, however, cannot be stated as a formula about the program itself. If we use the embed-
ding approach, we can only talk about values of variables occurring free in a program, and their
relation to the output. In particular, we could state that the output of the program is the factorial
of the value of n, if that value is a positive integer. But we could not prove or even formulate any
connection between the values of f , i and the program.

In reasoning about programs informally, and in documenting them, programmers often “anno-
tate” them with comments (written, say, to the right of the text) which refer to the ‘local’ values
of the variables. This concept is relatively easy to formalize, and can be used as the basis of a
much more convenient method of program verification in Lucid (and Iswim).

The extended system works by treating all verification as a form of transformation. The
transformations are applied to annotated programs—programs in which where clauses have added
‘marginal’ comments about the values of internal variables. There are rules for introducing anno-
tations, for deriving new annotations from old, for moving annotations in and out of clauses and
even for using annotations to modify the program itself.

The rules for annotated programs are, as was mentioned earlier, all transformation rules. The
annotation rules and their restrictions are very similar to those presented in the previous sections
for ordinary programs. We will therefore present only a brief summary of the annotation rules.

Among the most important is the Consequence Rule. It allows us to add to the commentary
of a clause any formula which is a logical consequence of the formulas already in the commentary.
Consequences derived using global reasoning are allowed. The Consequence Rule has a dual, the
Discard Rule, which is much simpler. It allows us to delete any formula in a commentary.

The Basis Rule allows us to add to a commentary any formula true in Lu(A) in all interpreta-
tions.

The Definition Rule allows us to add to the commentary the formula obtained by taking any
definition in the clause and universally quantifying all the formal parameters.

The Export Rule allows us to add to the commentary of an outer clause any formula in the
commentary of an inner clause. There are, however, strict controls in effect. It is necessary that no
variable clashes result; none of the locals of the inner clause, or of a definition containing the inner
(but not the outer) clause, may occur free. Fortunately, there is a small loophole in the restrictions.
If the formula to be exported has free occurrences of is current declared variables, and if these
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variables appear in synchronic contexts, then an export is possible. However, it is necessary first to
replace each declared variable by the right-hand side of the appropriate declaration. The Import
Rule is the reverse of the Export Rule. The loophole is actually more useful for importing. For
example, if a clause contains the declaration N is current next n, then the assertion next n = i
can be imported as N = i, provided i is not a local of the clause.

The Subject Rule allows us to convert internal information about the subject of a clause into
information about the clause itself. A simple formulation of this rule is as follows: suppose that
a clause contains a definition of the form V = W , that W is a clause with subject S and that
inside the commentary of W a formula containing S has been proved. Then the same formula
may be added to the commentary of the outer clause, with S replaced by V , provided no locals
of W appear in the formula after the replacement.

There is also a whole family of rules corresponding to the family of ordinary program trans-
formation rules described in the last chapter. The annotated version of a rule is the same as the
ordinary version except that the annotations are ‘dragged along’ with the code as it is moved
about. The restrictions on the annotated versions are more complicated, because occurrences of
variables in commentaries must be taken into account. For example, if we want to remove an
equation from a clause body, it is not enough to make sure that there are no relevant occurrences
in the clause of the variable defined by the equation. We must also check that there are no free oc-
currences of the variable in formulas in the commentary. However, apart from these complications,
the rules are straightforward and we will not give details.

The rules just described so far all have the property that their use involves only a one-way
flow of information from the actual program part (clause bodies) to the annotations. We therefore
need an additional rule, the Modification Rule, which allows annotations to be used to modify
the actual program text. This rule allows equations found as annotations to be used to rewrite
definitions. Careful restrictions (which will not be given here) are required to prevent the least
fixed point of the body of a clause being perturbed. The restrictions on the Modification Rule
have the effect of ensuring that the definition being modified could not have been of any use in
deriving the equation being employed. [We can sometimes avoid these restrictions by using the
“cyclesum test” of Wadge (1981) to show that the transformed definition still has a unique fixed
point.]

The annotation rules just described are almost independent of the particular logical formal
system in which annotations are expressed. However, the approach works best when the logical
system is one which is in harmony with the Lucid approach to iteration and time. For these
purposes a conventional two-valued logic is definitely not the harmonious choice. A conventional,
two-valued system forces the programmer to think in terms of static, infinite objects—exactly
the opposite of the approach we have been urging throughout the previous chapters. Program
verification will never enjoy much success as long as the language and concepts used to reason
about programs differ radically from the language and concepts used to actually write them. What
is needed is a form of logic which allows direct reasoning about values and properties which change
with time—without the introduction of explicit time parameters and ugly explicit indexing.

In fact there already exists a branch of logic which allows reasoning about time directly. Sys-
tems of this type are called tense logics and their formal properties have been studied by logicians
for many years. In tense logics formulas may be true at one instant and false at another, and
primitives (such as always and sometimes) are available which take time into account. A great
many tense logics are possible, depending on the notion of time involved and the primitives avail-
able. Tense logics were studied first by logicians interested mainly in the philosophical implications
of nonstandard logical systems. Later, computer scientists put these systems to work as asser-
tion languages for describing the behavior of conventional imperative programs. Recently, these
systems have been used to specify programs to be written, not just describe ones which already
exist.

In Lucid this “prescriptive” approach to the use of tense logic has been carried to its logical
conclusion. In Lucid the programs themselves are written in a language in which the values of
expressions depend on a ‘hidden’ time parameter. Lucid programmers are encouraged to think
about time in exactly the same ‘dynamic’ way which tense logic makes possible. It is only natural,
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then, that reasoning about Lucid should also take place in such a system.
The logic appropriate for reasoning about Lucid (or at least Luswim) programs is a particularly

simple one in which the collection of time instants is (or is isomorphic to) the natural numbers
together with the usual numeric ordering. The always and sometimes operators will not normally
be needed, but we will use the Lucid primitives first and next as logical operators. For example,
the formula next F is true at time t iff the formula F is true at time t + 1.

A number of minor technical difficulties arise (in particular, regarding the proper treatment
of ⊥), but the only real problem is distinguishing between ‘local’ and ‘global’ reasoning. In ‘local’
reasoning the verifier is drawing conclusions about the values of expressions at one particular time,
while in global reasoning he, she (or it) is deriving assertions true at all times from hypotheses
true at all times.

For example, one of the most important rules of inference (the Lucid Induction Rule) allows
us to infer an annotation A from the annotations first A and A → next A. The latter can be
proved by assuming A and deriving next A, but only if the reasoning involved is local. We need
to know that the fact that A is true at one particular instant implies that it is true at the next
instant.

More information about the Lucid logical system can be found in Ashcroft and Wadge (1976).
Naturally, the rules for manipulating annotations can be used for more than just assisting trans-
formation. These rules can be used to verify a program, i.e., to show that it is correct with respect
to some given specification. Annotations can even be used in program design: one could begin
with the specification and gradually refine it into a working program. Unfortunately these topics
are beyond the scope of this work, which is more concerned with Lucid as a practical tool rather
than as an object of formal study.

6.13 Verification Aiding Transformation: An Example

We close this chapter by presenting (in outline) an example of how verification and transformation
rules can be used together to massage a nontrivial (though still simple) program into an equivalent
but very different form which performs the calculations using a very different algorithm.

The programs we will be working with all compute a ‘running’ standard deviation of their
input: the output at time t will be the standard deviation√√√√ t∑

i=0

{
ai −

[ t∑
j=0

aj/ (t + 1)
]}2

/(t + 1)

of the sequence a0, a1, . . . , at, of values input so far.
Our first version is intended to be obviously correct, if inefficient.

sqrt
(
avg
(
(a−MEAN ) ∗ (a−MEAN )

))
where

MEAN is current avg(a);
end

where

avg(y) = s/n
where

n = 1 fby n + 1;
s = y fby s + next y;

end

end

It uses a näıve algorithm and imitates as closely as possible the specification of the problem given
above. With every number input it ‘rewinds’ its input stream all the way back to the beginning,
runs through all the input it has seen so far to compute the new average and then rewinds and
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runs through these numbers again to compute the output. The algorithm is quadratic: the amount
of work done (demands generated or arithmetic operations performed) in processing the first n
input values is proportional to the square of n. It also needs more and more memory, because all
the input values must be saved. Our goal is to transform it into a linear algorithm which uses
constant space.

Our first step is to prove that avg is linear; we will add the formula

forall x : forall y :
(
rational(x) and rational(y)⇒

avg(x + y) = avg(x) + avg(y)
)

We do this by showing that the assumption rational(x) and rational(y) (used globally if we
wish) allows us to transform avg(x) + avg(y) into avg(x + y).

We begin this transformation by using the Calling Rule on avg(x) and avg(y) so that the sum
becomes

s/n
where

n = 1 fby n + 1;
s = x fby s + next x;

end

+
s/n
where

n = 1 fby n + 1;
s = y fby s + next y;

end

Next we apply the local renaming rule to both clauses and rename n and s as n1 and s1 and n2
and s2, respectively. This clears the way for the amalgamation rule; it allows us to replace the
sum of the two where clauses by the single clause

s1/n1 + s2/n2
where

n1 = 1 fby n1 + 1;
s1 = y fby s1 + next y;
n2 = 1 fby n2 + 1;
s2 = y fby s2 + next y;

end

whose subject is the sum of the original subjects and whose body is the union of the two bodies.

We now introduce the two new definitions,

n = 1 fby n + 1;
s = x + y fby s + next(x + y);

into the clause, and derive the annotations

n = n1

n = n2

s = s1 + s2
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using Lucid induction. Then we can substitute n for both n1 and n2, giving us

s1/n + s2/n
where

n = 1 fby n + 1;
s = x + y fby next(x + y);
n1 = 1 fby n1 + 1;
s1 = y fby s1 + next y;
n2 = 1 fby n2 + 1;
s2 = y fby s2 + next y;

end

The definitions of n1 and n2 are now unused and can be eliminated. To get rid of s1 and s2, we
transform the subject to (s1 + s2)/n and then replace s1 + s2 by s (we are using the Modification
Rule here, but the cycle-sum test ensures that it is safe). We are left with

s/n
where

n = 1 fby n + 1;
s = x + y fby next(x + y);

end

which we recognize as the result of using the Calling Rule to expand avg(x + y).
Now that we have demonstrated the linearity of avg , we can return to the main clause. We

use the binomial theorem to expand the square of (a−MEAN ), and the subject becomes

sqrt
(
avg(a ∗ a− 2 ∗ a ∗MEAN + MEAN ∗MEAN )

)
where

MEAN is current avg(a);
end

Since avg is linear, we can reduce this to

sqrt
(
avg(a ∗ a)− avg(2 ∗ a ∗MEAN ) + avg(MEAN ∗MEAN )

)
where

MEAN is current avg(a);
end

We can also prove, without much difficulty, that avg(MEAN ∗MEAN ) is MEAN ∗MEAN and
that avg(2 ∗ a ∗MEAN ) is 2 ∗ avg(a) ∗MEAN (using the fact that MEAN in this context is a
constant). The subject becomes

sqrt
(
avg(a ∗ a)− 2 ∗ avg(a) ∗MEAN + MEAN ∗MEAN

)
where

MEAN is current avg(a);
end

and now MEAN occurs in a synchronic context only (in the subject of the inner clause). We can
therefore replace MEAN by avg(a) and discard the inner clause. The whole program is now (after
some cleaning up of the subject):

sqrt
(
avg(a ∗ a)− avg(a) ∗ avg(a)

)
where

avg(y) = s/n
where

n = 1 fby n + 1;
s = y fby s + next y;

end

end
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The program no longer rewinds its input to produce each output value, and does not need un-
bounded storage. It could still be improved, though. We can use the Calling Rule, expand all the
calls to avg and then discard the definition. Next, we can use the amalgamation rule to combine all
the clauses into one (as we have done before), and introduce some new variables for convenience.
The manipulations are completely straightforward and eventually produce

sqrt
(
s2/n− (s1/n) ∗ (s1/n)

)
where

s2 = a ∗ a fby s2 + next(a ∗ a);
s1 = a fby s1 + next a;
n = 1 fby n + 1;

end

This version is essentially the same as the previous one, but now it is clearer that it is using a more
sensible algorithm. Instead of saving all its input and repeatedly rereading it, it keeps running
sums of the input values and their squares. Its memory requirements are finite, and the amount
of work performed is now linear in the amount of input.

Of course, the transformation need not stop here. The program is still numerically näıve,
because it is subtracting larger and larger quantities. If we introduce the new definition

d = s2 ∗ n− s1 ∗ s1;

we can clean up the subject:

sqrt(d)/n
where

d = s2 ∗ n− s1 ∗ s1;
s2 = a ∗ a fby s2 + next(a ∗ a);
s1 = a fby s1 + next a;
n = 1 fby n + 1;

end

Now we change the program to compute d incrementally, rather than directly, Using the (easily
derived) annotations

d = first d fby d + (next d− d)

first d = a ∗ a
next d− d =

(
n ∗ (next a)− 2 ∗ s1

)
∗ (next a) + s2

we can modify the definition of d to be

d = 0 fby d +
(
n ∗ (next a)− 2 ∗ s1

)
∗ (next a) + s2;

and even better improvements are possible.
The improvements in the performance of the new version are real enough, even on the pLucid

interpreter. The interpreter is certainly slow, but the difference between a linear and a quadratic
algorithm is still very noticeable. The interpreter always saves its input (because demand for input
values is, in general, unpredictable). The new version running on its own will still require more
and more buckets in the memory. However, if the program were converted to a filter (so that the
values of a were not coming directly from the ‘outside world’), the difference would be noticeable.
A filter based on the original algorithm would endlessly redemand early values of its input and
prevent the interpreter’s garbage collector from collecting the buckets. The new version would
not ‘revisit’ its input, and eventually these buckets would be retired and collected if they were not
being used elsewhere.

The objection could be made that the programs are not really equivalent, because rounding
errors will cause different values to be produced. This is certainly the case, and indeed the last
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transformation was made with the intention of getting different, better output. This does not
mean, however, that formal equivalence between programs computing with approximations to
real numbers is an unrealistic concept. In general it will be true that transformed programs
will give different results in spite of being formally equivalent. Nevertheless, if we have used the
transformation rules correctly, we can be confident that any differences between the programs are
due solely to rounding errors. If the original was correct ‘in theory’, then so is the second, and
any problems can be blamed on errors in calculation. This knowledge can be extremely useful.
Otherwise, if a numerical program does not work, there is no simple way to decide whether a logical
error is at fault (and debugging is required) or whether the numerical techniques are inadequate.
The presence of numerical inaccuracy makes formal transformation and verification more, not less,
important. Program bugs are much harder to find through testing because the random numerical
errors provide excellent camouflage.



Chapter 7

Beyond Lucid

The language pLucid, described in the preceding chapters, is remarkably simple (at least when
compared to ADA or PL/I) and yet remarkably versatile. We have shown that a wide variety of
applications can be programmed in pLucid, including many (like the screen editor given in the
pLucid manual) that might be thought beyond the reach of a functional language. Recall that
pLucid is only one member of a family, and that applications which are difficult to program in
pLucid might be easier in another member of the family with more appropriate data types and
operations.

Nevertheless, the examples in the preceding chapters have revealed a number of limitations in
pLucid and in the whole Lucid family. In this chapter we will examine some of these limitations,
and propose tentative solutions. We will consider adding type checking and abstraction, adding
multioutput filters, adding arrays, adding a greater variety of computation/subcomputation inter-
faces and adding higher-order functions. In each case we will give a few sample programs written
in the extended language. We must warn the reader that as of this writing none of the added
features have been implemented and as a result none of the programs have been tested. We should
also emphasize that the proposals are tentative, and that they should not be considered as ‘official’
extensions to Lucid.

Although the live proposals presented are somewhat speculative, we feel that they are useful
and practical and conform to the design methodology described in Ashcroft and Wadge (1982).
Operational ideas are used to inspire the new feature; denotational concepts are used to specify
it; and then operational ideas (possibly new ones) are used to implement it. (The reference
just cited is slightly ambiguous about the ‘inspirational’ role of operational concepts.) We are
confident that the proposed extensions can still be understood and implemented within the broad
context of dataflow. Moreover, it seems that the demand-driven, tagged-dataflow model can easily
be extended to handle arrays, hyperfilters and higher-order functions—although there are some
subtle problems with the last of these. At any rate, even with the proposed extensions Lucid
would still be a “dataflow programming language”.

7.1 Types and Type Checking

A reader who took a quick glance at this book might be rather shocked that we are proposing a
typeless language. In recent years undisputed progress has been made in enriching programming
languages (even imperative ones) with a range of data types far more varied than the machine
word of assembly language or the array of FORTRAN. Indeed PASCAL’s data constructs are its
only novel feature and almost the only basis for any claim that the language is superior to its
predecessor, ALGOL 60.

In fact Lucid is not really a typeless language. Given any notion of data type (any algebra),
there is a member of the Lucid family which allows dataflow programming with ‘datons’, repre-
senting elements of the universe of the algebra. Of course, there is no uniform way of implementing
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the entire Lucid family; but at least the user is not limited in principle to a particular collection
of data objects and operations.

The parameter of any particular member of the Lucid family is a single-sorted algebra. It could
be argued, then, that each particular member of the family (such as pLucid) is a typeless language.
In a sense this is true; in pLucid, the member of the family used in most of this book, there are no
type declarations; any operation can be applied to any collection of operands. Nevertheless, the
universe of pLucid’s algebra in fact contains a wide variety of data objects (strings, lists, words
and numbers). The language pLucid allows four different ‘types’ of data. pLucid is typeless only
in the sense that there are no a priori syntactic constraints on what may be combined with what.
In other words, there is no syntactical type checking of any kind. In practice, though, unusual
combinations (like the sum of two strings) produce only the error object, so that programmers,
if they want to write a sensible program, must follow some implicit type discipline. pLucid is
not typeless in the way that a systems programming language like C is. The pLucid user cannot
get across to the machine representation of (say) words, and do arithmetic on them. (Clever
programmers can do this even in PASCAL.)

Of course, it would be quite easy to add PASCAL-style strong typing to Iswim or Lucid. When
a variable is defined, its type could be declared immediately; for example,

i : integer = 1 fby i + 1;

For user-defined functions, the types of the formal parameters could be declared as well, as in
PASCAL, in the form

sublist(i : integer, j : integer, S : list) : list = · · ·

Checking the consistency of such typed programs is completely straightforward. The underlying
algebra determining a member or instance of strongly typed Lucid would be many sorted, of
course.

Is it a good idea to have a language which is completely typeless in the sense that Lucid is
now? A typeless language is certainly much simpler—we have avoided types up to now for exactly
that reason. The basic principles of dataflow programming in Lucid can be demonstrated and
employed without any formal (built-in) type discipline. On the other hand, strong typing forces
the programmer to think more carefully about what is being done. Strong typing is also extremely
useful in detecting errors; most programming errors cause type anomalies which the type checker
automatically detects. A careful type analysis of a program can also help the implementation.
For example, if the programmer is syntactically restrained from ever using a string in a context in
which a list is expected and vice versa, the representation can be simplified: there is no need to
be able to distinguish them at run time. Type checking eliminates the danger of ‘puns’.

On the other hand, a strong type-checking system can be very constraining. It often prevents
a programmer from writing in a form that is concise and correct but too subtle for the limited
capabilities of the type checker.

PASCAL programmers well know the feeling of trying to program in a straightjacket. For
example, PASCAL programmers using lists cannot have a single type list and (as in pLucid) a
single hd and a single cons function. They must write different versions for every type of data that
might be stored in a list. An even worse example of this kind of constraint is given by PASCAL
arrays. In PASCAL you need a different sorting procedure for every possible length of array (if
the array to be sorted is a parameter). Furthermore, the endless type declarations required in a
strongly typed language can be extremely tedious. Programmers would justifiably resent having
to declare i as an integer in

i : integer = 1 fby i + 1

when the fact that i is always an integer is perfectly obvious from the definition.
It is our opinion that a simple-minded pigeonholing type system like PASCAL’s, based on a

many-sorted algebra, is more trouble than it is worth. The contortions and irregularities introduced
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by the programmer to get around the system (e.g., multiple copies of procedure definitions) entail
an enormous waste of human effort and can introduce as many bugs as the checker eliminates.
Finally, it should be apparent that the merits of a PASCAL-like type system can be appreciated
quite independently of the merits of Lucid’s approach to dataflow and iteration. It was felt that
incorporating a type-checking discipline into the language (especially one of dubious worth) would
distract the reader from the basic ideas of Lucid.

Our feeling is that type checking can be very useful provided it is sophisticated enough to

(i) allow polymorphism, so that for example the function hd can be applied to any list and
produce an object of the appropriate type;

(ii) allow one type to be a subtype of another, so that for example integers could also be real
numbers (it should not be necessary to distinguish 3 and 3.0);

(iii) allow parameterized types, so that (e.g.) for each type t there is a type listof (t) of lists with
components of type t; and

(iv) have a type checker capable of interpolating most types, so that the user can omit almost
all declarations.

There already exists a functional language with a type system and checker with properties (i),
(iii) and (iv): the language ML described in Gordon et al. (1977). One can define in ML a
function rev which reverses lists, omitting any type declarations. The ML type checker nevertheless
concludes that rev has type

listof (alpha)→ listof (alpha)

(alpha is a generic type variable—it represents an arbitrary type). It would not be particularly
difficult to adapt the ML system for Lucid. This could provide the ideal combination of disci-
pline and flexibility. The ML system does not, however, support requirement (ii). Shamir and
Wadge (1976) might prove a theoretical basis for an ML-like system which allows subtypes as well.

The ML approach to types is very different to that of PASCAL, and not just because it is
more flexible. Type declarations in PASCAL cannot be omitted because they contribute semantic
information. One cannot always determine the meaning of a PASCAL expression without knowing
the types of variables involved. In ML, by contrast, an expression has some meaning (which might
be an error object) no matter what types the values of the variables in the expression may have.
In other words, type assertions are properties of the values of expressions. Some values are
integers, others are not, some are lists, others are not. The meaning of the program can be defined
independently of any knowledge of the classification of values into types. The type declarations
are assertions about the meanings of the variables. Type checking is therefore a special kind of
program verification.

The success of the ML approach makes it possible to avoid making any a priori choice of type
system. We can first define the semantics of the language as we have done, in terms of a single-
sorted algebra. We can then select some classification of the single universe into types, together
with a corresponding type discipline.

There is, however, one respect in which the present Lucid approach to data structures is in-
herently inadequate: it is not completely abstract. An abstract approach to data types means
allowing the user to use the data types and operations in a completely representation-independent
way. Any particular member of the Lucid family is completely abstract in its treatment of the
data types supplied by the underlying algebra. In pLucid, for example, the programmer is pre-
sented with lists, and not with any particular representation of them (such as one using pointers).
However, if a programmer wishes to use a data type not already available in the particular family
member being used, he or she must either (i) simulate the data type with the types available or
(ii) use another member of the family. There is no way in which the Lucid programmer can expand
the collection of data types presented abstractly (the same criticism applies to PASCAL).
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Suppose, for example, that you wanted to do some work with polynomials in Lucid. It is
easy to represent polynomials as lists (lists of coefficients) and write functions which implement
addition, multiplication, division, and so on. If you were clever you would write all your polynomial
programs using only these primitives to handle polynomials. For example, you would never take
the head of a polynomial. The advantages of this discipline are (i) that it makes programs simpler
to read and write, since neither reader nor writer has to keep implementation details in mind
and (ii) that it makes modification much simpler; if you devise a new representation (which is
more efficient, or correct where the first was not) you need only change the definitions in your
polynomial ‘package’. You do not have to go searching through all your polynomial programs
changing the way polynomials are dealt with.

This is a very effective methodology. The problem is that with Lucid (or Iswim, or even
PASCAL) it is only that: there is no way of having it enforced. Programs which violate the
discipline are still legal. It is up to the users to check that they really have used the new types
in an abstract way. What is required is some way for the user to stipulate new types, and new
operations to be used on these types, in such a way that the type checker rejects any attempt to
work with other than the provided operations. We need a ‘module’ facility, which will allow us to
encapsulate information about the representation of the type so that it is not available outside.

This is not particularly difficult if the underlying type system is a pigeonholing one of the
PASCAL variety. Here is a hypothetical fragment of a extended Iswim program which defines the
new type poly (the syntax is ad hoc):(

poly : type,
degree(poly) : integer,
psum(poly , poly) : poly ,
pprod(poly , poly) : poly ,
scalprod(poly , rational) : poly

)
=

(poly , degree, psum, pprod , scalprod)
where

poly = listof (rational);
degree(x) = lengthof (x);
psum(p, q) = if null(p) then q

elsif null(q) then p
else hd(p) + hd(q) :: psum

(
tl(p), tl(q)

)
fi;

pprod(p, q) = if null(p) then [ ]
else psum

(
scalprod

(
hd(p), q

)
, 0
)

:: pprod
(
tl(p), q

)
fi;

scalprod(s, p) = if null(p) then [ ]
else s ∗ hd(p) :: scalprod

(
s, tl(p)

)
fi;

end

If we want our language to be usable, however, the module facility must be based on a looser,
ML-like type system. This is undoubtedly possible (ML has such a feature), but subtle technical
difficulties arise. In any case, these difficulties are not particular to Lucid or dataflow, and so will
not be discussed further.

7.2 Tupling, or Filters with Multiple Outputs

The reader may have noticed one strange restriction which we seem to have placed on dataflow
nets: nodes may have only one output. For example, consider the merge sorting algorithm given in
a previous chapter. The network given could be considerably simplified if we had a two-output deal
node which divided its input stream into two, sending alternate datons to alternate paths (rather
like a dealer distributing cards to two players). Double-output nodes are easily incorporated into
our net-drawing methodology: a node is considered as having one main output which is sent
straight on the main pipeline, plus ‘auxiliary’ outputs sent at right angles. Here is a net for the
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merge sort which uses a deal node:

next first// //

deal Msort merge if–then–else// // // // //
OOOO

Msort//

��

The nets which we have presented have, up to now, all been just graphical representations of
textual/algebraic (Iswim-like) programs. This is the reason that nodes have had only one output:
nodes in graphs correspond to functions, and in Iswim functions return only one value. Therefore,
if we want graphs with multiple-output nodes, and if we still want every graph to correspond to
some textual program, then we must extend Lucid (i.e., textual Lucid) to allow functions with
more than one output.

Fortunately, it is possible to extend Lucid (and Iswim) to allow multiple output functions
without really tampering with the fundamental notion of “function” on which these languages are
based. Instead, we simply extend any given underlying algebra by adding to its universe all finite
sequences (we call them tuples) of data objects. (We do this even when the algebra has sequences
in some other form, say as lists.) A ‘multiple-result function’ can then be represented as a single-
result function whose single result is a tuple. In programs, we can use a comma/parentheses
notation for tuples; for example, (a, b, c) will represent a tuple with the three components a, b
and c. We avoid introducing component selector operations by allowing tuples of variables to
appear on the left-hand side of definitions (this corresponds most closely to the graphical form).

We should emphasise that a tuple is not the same as a list. We want to distinguish between a
filter with one output line which carries a stream of lists, and a filter with several output lines.

Here, for example, is the textual form of the merge sort, using deal .

Msort(a) = if iseod first a then a
else merge

(
Msort(b0),Msort(b1)

)
fi

where

(b0, b1) = deal(a);
end

We could define deal with the following equation:

deal(x) = (x whenever p, x whenever not p)
where

p = true fby not p;
end

There are many natural operations that yield more than one value. One example is the ‘inverse’
of fby, which we call ybf . This function can be defined by the equation

ybf (x) = (first x, next x);

The following definition of whenever uses ybf :

whenever(x, p) = if P0 then X0 fby v else v fi

where

(X0, y) = ybf (x);
(P0, q) = ybf (p);
v = whenever(y, q);

end
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and the graph of this program is

ybf whenever fby if–then–else// // // // //
��

OO

ybf

OO OO

Even simple iteration often benefits from the tuple notation. Here is a program to compute
the greatest common divisor of inputs a and b.

x asa x eq y
where

A is current a;
B is current b;
(x, y) = (A,B) fby if x < y then (x, y − x)

else (x− y, y) fi;
end

In this form it is especially clear that x and y are varying together, ‘in step’.
Tupling is an example of a ‘feature’ that seems simple enough, but is semantically surprisingly

difficult, or at least subtle, if we want to avoid the explicit detupling operations and allow tuples
on the left-hand sides of definitions (as we have done in our examples). We would like to allow
‘structured’ left-hand sides, but at the same time we want to preserve the vital principle that the
statements in a program really are equations.

The ability to have expressions on the left-hand side, however, introduces the possibility that
the definition, considered as an equation, may have no solution. Consider, for example, the
equation

(x, y) = 8;

(in some conventional algebra). The number 8 is not a tuple; there are no values of x and y that
make the equation true. As a result, our definition of the semantics of a Lucid program does not
necessarily extend to programs that use tupling in an arbitrary way.

There is, of course, an easy way to assign meanings to such programs—if that is all we want
to do. We introduce symbols for the component extraction (or ‘projection’) operations: in general
let Pi j select the j-th component from a tuple of length i. Given a program with tupling on the
left-hand side, we ‘massage’ it into a normal program by replacing a definition like

(x, y, z) = w;

by the three definitions:

x = P3 0(w);

y = P3 1(w);

z = P3 2(w);

(We can stipulate that a selection function returns ⊥ when given something which is not a tuple, or
not one of the appropriate length.) We can then decree that the meaning of the original program
is the meaning of the new, massaged one.
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Unfortunately, this procedure is not quite honest. There is no guarantee that the solutions to
transformed equations are solutions to the originals. For example, the equation

(x, y) = 8;

is transformed to the pair;

x = P2 0(8);

y = P2 1(8);

of equations; and their solution sets requires both x and y to be ⊥. But (⊥,⊥) is certainly not 8.
If we proceeded to think and reason about such a program on the basis of our principle that
statements really are equations, we could get in trouble. We must restrict programs with tupling
in such a way that solutions of the transformed equations are solutions of the originals, and vice
versa (then the least solution will be the same in both cases). We must check that when an
equation like

(x, y, z) = w;

appears, that w really is a tuple of length three.
This checking is simple enough when the right-hand side expression directly involves tupling

as well, as in

(A, b, C) = (3, 5 ∗ i,K − L);

We can be a little more generous and allow tuple expressions on both arms of an if–then–else;
as in

(A, b) = if x > y then (x− y, x) else (x, y − x) fi;

However, tupling is not very useful if we restrict the Lucid user to these forms alone. It amounts
to adding a kind of nonprocedural multiple-assignment facility. Sooner or later the programmer
will want to give a name to a tuple and use the name in an expression; for example, by writing

a = if x > y then a0 else a1 fi;

a0 = (x− y, y);

a1 = (x, y − x);

More generally, the programmer will want to define tuple-valued functions (as we did earlier in our
examples). Since we definitely want this (recall that in terms of dataflow networks a tuple-valued
function is a filter with more than one output line), we cannot make the restriction that all tuples
be ‘anonymous’.

Unfortunately, if we allow variables to denote tuples, the checking becomes much more involved.
Suppose, for example, that we have a definition such as

(m,N) = if V < 0 then (−1, 1) else z fi;

in our program. In order to be able to give this equation a clean bill of health, we must look up
the relevant definition of z and verify that its value is in fact a tuple of length 2. If this definition
is of the form

(z, w, h) = bleen(k, l);

then we must check that the function bleen always yields a tuple of length 3, whose first component
is in turn one of length 2. This involves checking the body of the definition of bleen, and it may
turn out that bleen makes assumptions about the tuplicity of its arguments; for example, it may
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be that bleen assumes that its second argument is a quadruple. It may even be the case that some
parts of the tuple structure of the value of bleen depend on that of its arguments; for example,

bleen(g, h) = (g, c, d) where (c, d, e) = h; end;

and if this is the case, tuple checking must be performed on the actual parameters of any ‘call’ of
bleen. It is easy to see that tuple checking may propagate through the whole program.

The consistency checking also needs to be done to verify that expressions of the form A fby B
give the results expected. We must ensure that A and B have the same tuplicity. If we allow
the tuplicity of a variable to change with time, we are forced to give up any hope of syntactically
determining the tuplicity of expressions.

Special difficulties arise when the output tuplicity of a recursively defined function depends
directly or indirectly on itself. For example, consider the definition

divs(a, d) = if a < d then (0, d) else (q1 + 1, r1) fi
where

(q1, d1) = divs(a− d, d);
end

(divs(a, d) returns the quotient and remainder which result when a is divided by d). The question
is, do we consider an expression of the form divs(x, y) to be a tuple or not?

The checking algorithm described informally goes into a loop; it tells us that divs returns 2-ple
iff divs returns 2-ple! All is well as long as the computation of a particular ‘call’ of divs converges,
but what about those that do not (such for divs(2,−2))? In this case the result is ⊥—apparently
not a tuple! This conundrum appears in Lucid in a sharper form: Is

(x, y) asa p

a tuple whether or not p is eventually true? The tuple checking is a form of type checking, and
should therefore avoid performing any ‘real’ computation. It should not be necessary to check if
loops terminate (which is impossible anyway). On the other hand, it is hard to find fault with the
equation

(a, b) = (x, y) asa p;

Still, we want our statements-as-equations principle to hold. Perhaps all that is necessary is to
require that

(⊥,⊥, . . . ,⊥) = ⊥;

so that ⊥ has all tuplicities. We do not know if this approach works, although we conjecture that
it does.

7.3 Arrays, or Frozen Streams

We have already seen that one can easily do nontrivial problems in Lucid without using anything
like an array, even though the corresponding PASCAL programs make heavy use of arrays. The
explanation is that PASCAL programs often use arrays where a corresponding Lucid program
uses streams. Arrays in PASCAL are usually scanned in order (accessed sequentially rather than
randomly). The essential difference between arrays and streams is that the first represents an
ordered series of items at rest, whereas the second represents an ordered series of items in motion.
The imperative languages are based on the idea of processing data at rest, so it is only to be
expected that arrays play a crucial role. When dataflow algorithms are programmed in imperative
languages, streams are often simulated by arrays.
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Lucid, however, is based on data in motion and streams play a crucial role. When dataflow
algorithms are programmed in Lucid, streams appear as streams and there is no need to represent
them statically. The arrays disappear.

Sometimes, however, Lucid programs involving streams have a somewhat awkward or unnat-
ural flavour even if they are technically simple. In many cases a little reflection shows that the
programmer is being forced to do the exact opposite of what happens in PASCAL; the programmer
is forced to represent, as a stream, data which is better thought of as being at rest.

Consider, for example, the recursive definition of merge (of two increasing streams of integers):

merge(x, y) = if first x < first y
then first x fby merge(next x, y)
else first y fby merge(x, next y)
fi;

Thinking of x and y as streams (data in motion) is somehow not quite right; the program is far
easier to understand if we imagine all the infinite number of values of x and y laid out all at once.
We compare the initial elements of x and y, choose the smaller, and then merge one of x and y
with what remains of the other.

This point is easier to appreciate if we use rest instead of next, but with the same meaning.
This word is fully appropriate in

merge(x, y) = if first x < first y
then first x fby merge(rest x, y)
else first y fby merge(x, rest y)
fi;

On the other hand, the use of rest in

s = first x fby s + rest x;

is completely inappropriate. The difference, of course, is that in the merge definition it is natural
to think of all the components of the sequence as being present simultaneously, whereas in the
second it is natural to think of the values of s being generated in succession, as the values of x
become available. In the second it is quite natural to imagine that at any given time only one or
two components of s or x are present.

It is our experience that lack of understanding of the dynamic point of view is often the greatest
obstacle for people who want to read and write Lucid; they see that the formal semantics is given
in terms of infinite sequences and assume that this is the way the programmer is supposed to
think. Definitions like that of merge offer no problems, but simple equations like the definition
of s are absolutely baffling. People who misunderstand Lucid in this way often ask why we use
next instead of rest or tail . (And such people find is current and mixed freezing absolutely
beyond the reach of human comprehension.)

In Lucid the dynamic view is the intended one, hence the words next, whenever, current

and so on. Thinking and writing in terms of static histories is a gross misuse of the language.
Sometimes, however, the static approach is appropriate; and in these circumstances the dynamic
point of view represents a serious misunderstanding. In Lucid as it stands, however, the dynamic
point of view is essentially forced on the programmer, and the fault lies with the language instead.

One solution to this difficulty would be to provide rest as a synonym for next (and initial

as a synonym for first) and advise the programmer to use whichever is appropriate. This idea
breaks down, though, when the user tries to write a program involving both the dynamic and the
static points of view. For example, we might want to write an iterative program in which each
value of a loop variable is an entire ‘static stream’.

The deficiency in Lucid is therefore deeper than syntax and is not just a matter of attitude.
Lucid genuinely lacks a static analog of streams. Of course, we could always treat static streams
as just another data type, and use a member of the Lucid family based on algebras with static
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streams. However, this would be far from satisfactory. The notion of a static stream is obviously
intimately linked with the analogous dynamic concept (might want to convert between the two).
This notion is not inherently connected with any particular data types, i.e., with any particular
algebras.

If streams are objects that vary in time, the corresponding static objects ought to vary in
space. This suggests modifying the semantics of Lucid [in particular, the definition of Lu(A)] to
allow space as well as time parameters. This is the solution we describe here. The space-varying
objects are called ferds. (The Oxford English Dictionary lists “ferd” as an obsolete word meaning
“a warlike array”.)

Time and space are not, however, quite symmetric. For one thing, time-varying objects are
intended to be thought of in parts (in terms of individual values), whereas space-varying objects
are thought of as a whole. Furthermore, although there is only one time parameter, there is
no reason to have only one space parameter as well. In fact, multidimensional ferds are almost
unavoidable. We want to allow streams of ferds (as above); and we want to be able to ‘package up’
any stream as a ferd. But when we package a stream of ferds, the result will be a ferd of more
than one dimension.

This is the road we choose to follow. To avoid bothersome type distinctions, our ferds will all
be notionally infinite-dimensional.

The language Flucid (ferd Lucid), which we now introduce and describe informally, is based
on an algebra-producing operation Flu in exactly the same way as Lucid is based on Lu. The
elements of Flu(A) are streams of ‘hyper-arrays’ with individual values determined by one time
parameter and infinitely many space parameters. In other words, they are functions from

N ×NN

to the universe of A (N being the set {0, 1, 2, . . .} of natural numbers). The value of one of these
objects F , given time parameter t and space parameters 〈s0, s1, s2, . . .〉, we will write as F s0s1s2···

t .
Ordinary data operations are, of course, extended pointwise in space as well as time.

The most basic ferd operations are the space analogs of first, next and fby. These are called
initial, rest and cby (continued by). In general,

initial(F )s0s1s2···t = F 0s0s1s2···
t

rest(F )s0s1s2···t = F
(s0+1)s1s2s3···
t

cby(F,G)s0s1s2···t =

{
F s1s2s3···
t s0 = 0

G
(s0−1)s1s2s3···
t s0 > 0

(here initial , rest and cby are initialFlu(A), restFlu(A) and cbyFlu(A), respectively). The follow-
ing equations must therefore always hold:

initial F cby rest F = F

initial(F cby G) = F

rest(F cby G) = G

Obviously, the definitions of initial, rest and cby are similar to those of first, next and fby,
but thought of differently. Given a ferd F , initial F is the first component of F ; rest F is the
result of dropping that component; and x cby F is the result of sticking x on to F as the initial
component.

Notice one important difference between the space operations and the corresponding time
operations: initial F is not the first component of F stretched out in space in the same way
as first x is the first time component of x stretched out in time. It is only the first component
of F , and is not necessarily equal to initial initial F . The latter is the initial component of
the initial component of F . In that sense, the three space operations correspond more closely to
the list operations hd , tl and cons.
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Our ferds do not have any explicit rank, but an implicit rank can often be assigned. For
example, the value of an individual component of F may depend on s0, s1 and s2 only. In such
a case, F can be thought of as ‘really’ just a three-dimensional object. The ‘rank’ of rest F is
therefore usually that of F , but the ‘rank’ of initial F is at least one less than that of F . If x
is rank n− 1 and F is rank n, then x cby F is rank n. Notice that we can define ferds of infinite
rank; for example, with the equation

F = F cby 2;

The object defined here has a ‘singularity’ at the space point 〈0, 0, 0, . . .〉 (the value at this position
is ⊥).

The next most important ferd operations are those for converting streams into ferds and vice
versa. The operation all takes a stream as its operand and returns as its result the entire history
as a ferd; it converts time to space, so that if i is the stream of natural numbers defined by

i = 0 fby i + 1;

then all i is the array of all natural numbers. The function all is defined by the equation

all(X)s0s1s2···t = Xs1s2···
s0

Notice that the value of all x is independent of time; it is a constant. The companion of all
is elt (element), and it converts space back into time. If F is a ferd which is constant in time,
elt F is the stream of components of F , i.e., the value of elt F at time t is the t-th component
of F . If F itself varies with time, elt performs a ‘gather’ in that the value of F at time t is the
t-th component of the (ferd) value of F at time t. The operation elt is defined by the equation

elt(F )s0s1s2···t = F ts0s1s2···
t

The two functions are ‘not quite’ inverses, in the following sense: we have

elt all x = x

for all values of x but

all elt F = F

only if F is constant. The operations all and elt are useful when we want to define a stream
function in a manner more appropriate to arrays or when an array is to be defined by generating
its components in order.

For example, we can define the merge operation on streams (after all, the operation itself is
quite naturally understood as a binary filter) as follows:

merge(x, y) = m
where

a = all x fby if p then rest a else a fi;
b = all y fby if p then b else rest b fi;
p = initial a < initial b;
m = if p then initial a else initial b fi;

end

This is an example of a program which has loops with ferd-valued loop variables. At any given
point in time the value of a is an entire ferd; and on each iteration this entire value can change.
Naturally, since ferds are infinite, there is no simple corresponding PASCAL loop.
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The relationship between space and time can be clarified by reconsidering the ‘sieve’ algorithm
to produce primes. In its original Lucid form:

sieve(n)
where

n = 2 fby n + 1;
sieve(x) = first x fby

sieve(x whenever x mod first x ne 0);
end

it could be thought of as specifying a dynamic pipeline with a new filter added for every prime
found (this was the way McIlroy thought of it). However, a static view is also possible:

sieve(n)
where

n = all i
where

i = 2 fby i + 1;
end

sieve(X) = initial X cby

sieve(X wherever X mod initial X ne 0);
end

with wherever being the obvious spatial analog of whenever. The above, however, is clearly a
recursive version. Here is an iterative one:

sieve(N)
where

N = all i
where

i = 2 fby i + 1;
end

sieve(a) = all p
where

A is current a;
m = A fby m whenever m mod p ne 0;
p = initial m;

end

end

but now sieve, being no longer recursively defined, can be eliminated from the program. After a
little tidying it becomes

all p
where

i = 2 fby i + 1;
m = all i fby m wherever m mod p ne 0;
p = initial m;

end

In this form it is much more evident that the program is correct. It is quite easy to see that at
each step in the iteration m is the array of all numbers not divisible by any prime less than the
value of p at that step.

From a conceptual point of view, ferds are easily incorporated in the informal iterative/dataflow
operational model, which we have been recommending as a programming guide. After all, one
should have no difficulty in imagining infinite data objects flowing through a network. As for
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the actual implementations, those which are based on demand-driven dataflow could easily be
adapted. Adding ferds means only that the tag of a daton has a third extra ‘field’, for the code
for the space parameters, in addition to the existing ones for the codes for the time and place
parameter. Ferds are much more in the spirit of Lucid and dataflow than (say) the infinite lists
used by LISP-oriented functional languages.

7.4 ILucid, Lucid with Multidimensional Time

We have already seen that the simple primitives of ‘ordinary’ Lucid allow for an amazing variety of
different kinds of computation. However, ordinary Lucid still provides only two forms of interaction
between a computation and a subcomputation. Programmers often find Lucid somewhat restrictive
in this sense. People used to conventional imperative languages perceive it as an inability to
“do I/O in a subcomputation.” Suppose, for example, that we wanted to perform a lexical analysis
of a stream of input characters. We want to bundle up groups of characters into lexical units
(“lexons”) and output the stream of lexons. A PASCAL programmer would write a main loop
which produces a lexon ‘each time round’, with a subloop that on each invocation runs through as
many characters as are needed for the next lexon. The PASCAL program cannot be transcribed
directly into Lucid because the interface between the main loop and the subloop is not one of
the two supplied by Lucid. The subloop is not running in parallel with the main loop, nor is
it being invoked once for each input item. In fact the program is not particularly hard to write
using whenever and upon (instead of using a subcomputation); but after writing a number of such
programs, one quickly gets the impression that these two operators are being used to ‘simulate’
something which should be made more directly available.

Of course, there would be no real difficulty in adding other forms of computation/subcomputation
to the language. Suppose, for example, that we want an inner variable V to have on the t-th in-
vocation of the subcomputation the sequence of values

et, et+1, et+2, . . .

where e is the value of some expression E. (This would allow the subcomputation to ‘look ahead’
in the main computation.) We could always extend the syntax to allow declarations of the form

V is remaining E;

and make the appropriate changes to the definition of the semantics of where clauses; but this
seems a little ad hoc, and contrary to the algebraic approach of Lucid.

It is possible to extend Lucid’s algebraic approach to handle the interface problem, but we
must first extend the notion of a history. The total activity of a variable defined in a deeply
nested iteration cannot be described by a single infinite sequence. To specify a particular value of
such a variable, we need to know which step the innermost iteration has reached; and which step
the next enclosing iteration has reached; and which step the next enclosing iteration has reached;
and so on. We need multidimensional histories.

The simplest way to proceed is to define a generalized history to be a function of the entire
infinite sequence t0, t1, t2, . . . of time parameters. In other words, a generalized history (or hyper-
stream) is a function whose domain is the set NN of all infinite sequences of natural numbers.
These objects are in a sense streams whose dimensions are formally infinite. In actual programs,
though, the values of any particular variable will depend on only finitely many of the time pa-
rameters. It is extremely important to understand that time is parameterized from the inside out;
t0 is the time in the current local computation, t1 that in the enclosing computation, t2 that in
the next enclosing computaton and so on.

It is not hard to see how to define the data operations and normal Lucid operations on hyper-
streams; they are simply extended pointwise to the t1, t2, t3, . . . parameters. The value of next(a)
is the stream next(a) where

next(a)t0t1t2··· = a(t0+1)t1t2···
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because next(a) is the value a has on the next step of the local computation. From the global
point of view, this is the value which a has on the immediately succeeding step of the computation.
It is the value obtained when only the innermost computation is advanced one step, i.e., when
all the enclosing computations remain suspended. In the same way, the hyperstream operations
first and fby are defined by

first(a)t0t1t2··· = a0t1t2···

fby(a, b)t0t1t2··· =

{
a0t1t2··· t0 = 0

b(t0−1)t1t2··· t0 > 1

Finally, we need special hyperstream operators which give the various nesting effects. We could
define these operators directly, one for each interface, but it is possible instead to give a set of
primitive operations from which the others can be defined.

Among the hyperstream primitives there are only two which actually change the ‘dimension’
of a hyperstream. The remaining operations take t1 into account but do not alter dimensions.

The dimension ‘shifting’ operations are called active and contemp, and are defined as follows:

active(x)t0t1t2··· = xt0t2t3···

contemp(n)t0t1t2··· = nt0t0t1t2···

The meaning of active can best be grasped if we assume that the value of x is independent of t1,
t2, t3 and so on; in other words, that x is ‘really’ just a sequence of the form

〈x0, x1, x2, . . .〉

In this case the value of active(x) depends only on t0 and t1, and is ‘really’ the double sequence〈
〈x0, x1, x2, . . .〉, 〈x0, x1, x2, . . .〉, 〈x0, x1, x2, . . .〉, . . .

〉
(with t0 the index of the inner sequences and t1 the index of the outer sequences). This can be
interpreted as follows: the value of x inside each subcomputation is the same stream as outside; on
each invocation it is restarted and runs through its complete set of values. The variable is active
inside the subcomputation.

The operation contemp can also be understood in terms of double sequences. Informally
speaking, it collapses a double sequence into a single sequence by sampling. It turns〈

〈a0, a1, a2, . . .〉, 〈b0, b1, b2, . . .〉, 〈c0, c1, c2, . . .〉, . . .
〉

into

〈a0, b1, c2, . . .〉

The value of contemp(x) is the value which x has inside a loop when the inner time (t0) ‘catches up’
with the outer time (t1); it is the contemporary value of x. It is therefore easy to see that
contemp(active(x)) is the same as x.

The function active in a sense gives nesting without freezing. If we want freezing as well,
we need another function to do it (but this function does not have to change dimensions). The
obvious name for the new function is current; it is defined as follows.

current(y)t0t1t2··· = yt1t1t2t3···

In terms of double sequences, current transforms〈
〈a0, a1, a2, . . .〉, 〈b0, b1, b2, . . .〉, 〈c0, c1, c2, . . .〉, . . .

〉
into 〈

〈a0, a0, a0, . . .〉, 〈b1, b1, b1, . . .〉, 〈c2, c2, c2, . . .〉, . . .
〉
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In the same way the ‘from now on’ effect can be obtained with the function remaining, where

remaining(x)t0t1t2··· = x(t1+t0)t1t2···

The function remaining transforms the sequence〈
〈a0, a1, a2, . . .〉, 〈b0, b1, b2, . . .〉, 〈c0, c1, c2, . . .〉, . . .

〉
into 〈

〈a0, a1, a2, . . .〉, 〈b1, b2, b3, . . .〉, 〈c2, c3, c4, . . .〉, . . .
〉

The functions current and remaining can be defined in terms of still simpler operations, opera-
tions which are the t1 analogs of first, next and fby. We will not give details.

We can use these definitions to specify an operator Llu on algebras, which takes a data al-
gebra A and returns an algebra Llu(A) of hyperstreams. Given any A, we can form the lan-
guage Iswim(Llu(A)) and write Luswim-like programs with nested iterations. Here are two simple
Iswim(Llu(P )) programs which use this explicit algebraic approach to specifying subcomputations.

contemp(y asa y > m)
where

m = current active n;
y = remaining active x;

end

contemp(maxsofar eq current active p)
where

maxsofar = active(p) fby if maxsofar > active p
then maxsofar
else active p fi;

end

The first finds the first-encountered present or future value of x which is greater than the present
(current) value of n. The second tests if the current value of p is the greatest so far.

These various strange operations on hyperstreams (we could call them hyperfilters) may seem
rather farfetched. We can still think of programs using hyperfilters in terms of pipeline dataflow,
but a realistic implementation along those lines could be very complicated. Fortunately, however,
hyperstreams and hyperfilters are quite simple from the tagged-dataflow point of view. The pLucid
interpreter already handles multidimensional ‘time tags’; with very little work it could be made
accept programs with hyperfilters. There is therefore much to be gained by extending Lucid with
hyperstreams. We could greatly increase the power and simplicity of the language, without at the
same time greatly increasing the complexity of the implementation.

One serious problem with this approach is that active has to be explicitly applied to all
the ‘global’ variables of a subcomputation. The programmer has to explicitly write all these
applications, and this could be very tedious. For example, in the second of the programs given
above, p is a global of the subcomputation. As a result, all four occurrences of p inside the where

clause have to be as an argument of active. If we did not apply active to these occurrences,
strange results would be produced.

What is still required is a linguistic way of enforcing the discipline and saving the poor pro-
grammer the worry of balancing active–contemp’s. The easiest way to do this is to generalize
the way in which Lucid links the Iswim where clause (which really only hides definitions) and
the idea of subcomputation. We do this by redefining the meaning of where so that active is
automatically (and ‘secretly’) applied to the globals of a where, and contemp is automatically and
secretly applied to the result. The resulting language (which we might call “Llucid”) is much more
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convenient. Here are the preceding two examples written in Llucid

y asa y > n
where

n = current n;
y = remaining x;

end

maxsofar eq current p
where

maxsofar = p fby if maxsofar > p then maxsofar else p fi;
end

We can even reconcile Llucid with ordinary Lucid by defining “is” to be “nonrecursive” definitional
equality (the form that was the default in Landin’s original Iswim).

This approach, however, still has drawbacks. Llucid is not a member of the Iswim family, and
this causes serious difficulties when we try to define hyperfilters with where clauses. It seems very
unsatisfactory to introduce hyperstreams and hyperfilters and still have to modify the semantics
of the where clause. Ideally, we would like to be able to write programs with subcomputations in
a language which really is a member of the Iswim family. Llucid is much more general than Lucid
but is still not, in this sense, strictly kosher. Iswim(Llu(A)) is tantalizingly close, but the goal
remains outside our grasp.

7.5 Lambda Lucid, Lucid with Higher-Order Functions

The reader will have undoubtedly noticed another serious restriction on Lucid: the lack of func-
tional parameters. One Lucid function cannot appear as the argument of another function. Func-
tions cannot even appear as the arguments of operations (presupplied functions). In other words,
functions cannot be handled as data objects in their own right—they can never appear in pub-
lic without being accompanied by an argument. The Lucid programmer can talk about f(3) or
f(H −G) or f(x) (the values of f for given arguments) but never about f itself. In this respect
Lucid is more restrictive than PASCAL or even FORTRAN (but, ironically, not ADA).

There are many excellent reasons for wanting to process a function as a data object. One
reason is to avoid cluttering up a program with ‘dummy’ variables and to make clearer the way
in which filters and functions are built-up from simpler ones. Suppose, for example, that we have
written a compiler for some language in Lucid, and that the program has the form

comp(P ) = optimise(codefor(parsetreeof (lex (P ))))
where

lex (X) = · · ·
parsetree(L) = · · ·
codefor(T ) = · · ·
optimise(C) = · · ·

end

The part of the program above the where simply says that the filter comp is formed by putting the
filters lex , parsetree, codefor and optimise in series. The variable P is just a dummy; a temporary
name for the input to comp, which appears (with this meaning) only in one other place, namely,
directly on the other side of the equals sign (but not in the body of the program). Nothing
called P really has anything to do with the way lex , parsetree, and so on, are combined to form
comp. The dummy could have been Q, or W , or almost any other variable. But in any case, the
Lucid programmer is forced to choose some variable.

The relationship between comp, lex , parsetree, and so on, is made much clearer by the dataflow
diagram

// lex // parsetree // codefor // optimise //
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In UNIX notation, we can make it equally clear by defining comp to be the filter

lex | parsetree | codefor | optimise;

but in Lucid we are not allowed to refer to any of the filters in the absence of an argument. We
therefore have to invent a dummy argument to accompany them.

The dummy variable P could easily be avoided if Lucid had a reverse function composition
operation. It would be convenient to add such an operator to Lucid (we could use the symbol |)
so that the program given above could be rewritten as

computation = lex | parsetree | codefor | optimise
where

lex (X) = · · ·
parsetree(L) = · · ·
codefor(T ) = · · ·
optimise(C) = · · ·

end

The reason we cannot add this operation to Lucid as it exists now is that it is higher-order ; neither
its arguments nor its results are streams of simple data objects.

Of course ‘piping’ is a relatively simple operation, and we could easily devise a preproces-
sor which would remove this and similar ‘inessential’ uses of higher-order functions. There are,
however, other, more essential uses of higher-order objects which cannot be handled so simply.

Suppose, for example, that in the course of writing a program we need to find (an approximation
to) a root of a function f which is negative at 0 and positive at 1. A simple binary search algorithm
can easily be written in Lucid, as follows:

l asa abs(u− l) < 0.0001
where

u = 1 fby if mval > 0 then m else u fi;
l = 0 fby if mval <= 0 then m else l fi;
m = (l + u)/2;
mval = f(m);

end

Suppose, however, that we later need to find the roots of functions g and h in the same way.
(Algorithms with ‘parameters’ which are functions are very common in numerical analysis.)

The obvious solution is a single Root function, defined as follows:

Root(f) = l asa abs(u− l) < 0.0001
where

u = 1 fby if f(m) > 0 then m else u fi;
l = 0 fby if f(m) <= 0 then m else l fi;
m = (l + u)/2;
mval = f(m);

end

Again, this is not legal Lucid as it stands. A Lucid implementation’s syntax checker would
completely miss the point, and complain that f is being used inconsistently (with different arities).

Clearly, there is a case to be made for higher-order objects being made available; even for
solid, mainstream, ‘meat-and-potatoes’ computing (such as numerical analysis). It is therefore
worth investigating how the Lucid approach to dataflow can be combined with a higher-order
functional language. Unfortunately, certain problems arise with higher-order functions, which are
not encountered when we extend Lucid with more ordinary data objects.

Suppose, for example, that we want to have arrays in Lucid—that we want to write dataflow
programs which manipulate (finite) multidimensional arrays. We simply define an operator Arr
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which takes an algebra A of arbitrary data types and operations and returns an algebra Arr(A)
which extends A by adding multidimensional arrays with components from the universe of A. [The
extra operations over Arr(A) could be those of APL.] Once we have the operation Arr , the rest
is easy. The language Lucid(Arr(A)) extends Lucid(A) by adding arrays and array operations as
desired.

In a sense, the Lucid concept of stream here takes precedence over the APL idea of arrays. We
have streams of arrays, but not arrays of streams. [The latter can be found in Iswim(Arr(Lu(A))),
a very strange language.]

In trying to combine Lucid and functions, the issue is not so clear cut. We could define an opera-
tion Fun which extends an algebra A by adding all functions of all levels over A. [Fun(A) could have
an explicit function application operation.] Then we could extend Lucid(A) to Lucid(Fun(A)).

This language has higher-order functions—but only higher-order data functions. We could
write definitions like the following:

f = \x : x fby \x : x ∗ f(x);

which define streams whose individual values are functions. We cannot, however, define piping,
because it is an operation on filters.

The language Lucid(Fun(A)) allows filters but not operations on filters. We could define a
reverse composition operation but it would still be a filter. It would accept two streams of data
functions and compose them pointwise. The trouble is that in Lucid(Fun(A)) the concept of
stream takes precedence over that of function. We have streams of higher-order functions, but not
higher-order stream functions.

Another possible approach is to make the notion of function primary, and use a language like
Iswim(Fun(Lu(A))). This approach genuinely extends Luswim as it is now (but including nesting
is a problem). All the Lucid functions like next and fby can be found in the domain. And it
does allow higher-order functions. We can have filter piping, since | (reverse filter composition)
can also be found.

This solution is better but still not completely satisfactory. We might well want to write
programs which process streams of functions. If function streams are not allowed, if a variable
cannot take on a function value, then functions are second-class data objects in comparison with
integers or lists. This is totally against the spirit of the Lambda-Calculus languages. At the
same time, it would mean that some algorithms (which operate on functions) could be expressed
recursively but not iteratively.

This is against the spirit of Lucid. The problem, it seems, is that sometimes we want the
notion of “stream” to be primary, sometime “function”; we must have both available in the same
domain.

The difficulties encountered in just specifying a higher-order dataflow language may well be
symptomatic of a certain conflict or antagonism between the notions of iteration and recursion.
In ordinary Lucid these two features are available and cooperate in harmony, but only because
one of them (recursion) is severely restricted.

There are a number of possible solutions to the problem, but the simplest appears to be the
most obvious: to have ‘function filters’. By this we mean allowing streams of data functions, and
also allowing filters which operate on these streams—in other words, Iswim(Fun(Lu(Fun(A)))).

When we come to specify the operations, however, we must be careful. It seems, at first sight,
that we need two different function application operations. The first is ordinary application, used
for applying an element of L→ L to an element of L [L being Lu(Fun(A))]. The second is what
we might call “data function application”, which we will (temporarily) denote with the symbol :.
This second operation is used to apply a stream of data functions (elements of A → A), and the
value of x is a stream of data objects (elements of A), then the value of f : x would be the stream
of results resulting by applying values of f to corresponding values of x.

In fact, this duplication is unnecessary. Every function stream f already determines a cor-
responding filter f∗ which transforms streams by applying the values of f pointwise; in other



7.5. LAMBDA LUCID, LUCID WITH HIGHER-ORDER FUNCTIONS 165

words

f∗(x) =
〈
f0(x0), f1(x1), f2(x2), . . .

〉
Not every filter g is of the form f∗ for some f , because any f∗ has the crucial property that the
value of f∗(x) at time t depends only on the value of x at time t; in other words, f∗ is always
synchronic (recall that g is synchronic iff

g(x)t = g
(
〈xt, xt, xt, . . .〉

)
t

for all x and t). It can be proved that a function g is synchronic iff it is of the form f∗ for some
stream function f ; indeed f is the stream whose t-th value is the data function k, where

k(d) = g
(
〈d, d, d, . . .〉

)
for any data object d.

The synchronic filters can therefore be considered as function streams as well. This means
there is no need to have a separate application operation. When evaluating f(x), if the meaning
of f is a stream f (of functions), we apply f∗ to the meaning of x.

By the same token, there is no need to restrict the stream operations like first and next

to operate only on streams. If g is synchronic, then it is ‘really’ a stream 〈f0, f1, f2, . . .〉 of
functions (with g = f∗), and next(g) should obviously be the synchronic function corresponding
to 〈f1, f2, f3, . . .〉; in other words (next(f)∗). Of course, not every g is synchronic; but given any g
we can still form an f using the equation given, and we can still return next(f)∗. If g is not
synchronic, the result will be rather strange, but we should not expect otherwise; nonsynchronic
filters are not really streams anyway. We see, then, that every element of L can be coerced into a
stream if it is not one already, or coerced into a filter if it is not one already.

This approach (we will omit the details) seems to give the desired hybrid of functional pro-
gramming and dataflow programming. A definition

f(x) = E

makes the value of f the least element of L → L which satisfies the equation. The expression
\x : E is the function defined by the equation f(x) = E (provided f does not occur in E). There
is only one kind of application and only one lambda.

The program

pow(odd)
where

pow = \x : x fby \x : x ∗ pow(x);
odd = 1 fby odd + 2;

end

outputs the stream 1, 9, 125, . . . (= 11, 32, 53, . . . ), and the program

(next pow) (odd)
where

pow = \x : x fby \x : x ∗ pow(x);
odd = 1 fby odd + 2;

end

outputs 1, 27, 625, . . . (= 12, 33, 54, . . . ). At the same time the definition

pipe(P,Q) = \x : Q
(
P (x)

)
;

defines piping, so that our original sample program given in the introduction could have been
written with pipe(sqroot , pipe(avg , square)) as the subject.
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Appendix A

The pLucid Programmers Manual:
Introduction

by A. A. Faustini, A. A. G. Yaghi and S. G. Matthews

The language pLucid can best be described as a functional dataflow programming language.
We use the term dataflow because a pLucid program defines a dataflow net and we use the term
functional because for each node in the net, the entire output history is a function of the entire
input history.

A brief look at pLucid ’s pedigree shows that its block structuring mechanism is the where

clause from P. J. Landin’s ISWIM, and that its data types are those of POP-2, i.e., integers,
reals, Booleans, words, character strings and finite lists. The language pLucid is typeless and so
there are neither type declarations nor compile-time type checking. Those programmers who are
familiar with programming the UNIX shell will feel at home programming in pLucid. The reason
for this is that basic to both pLucid and UNIX are the concepts of filter and data stream.

A pLucid program is an expression, and a program execution is an expression evaluation. For
example, consider the simple expression

x + y

which constitutes a complete pLucid program. When evaluated, this program repeatedly demands
values for x and y and outputs their sum. Note that the free variables in a pLucid expression are
assumed to be inputs. The above program induces an endless interaction between the user and
the evaluator that might proceed as follows:

x( 0): 2 The first demand for a value of x.
y( 0): 3 The first demand for a value of y.

output( 0): 5 The first value of the sum.
x( 1): 1 The second . . .
y( 1): ~8

output( 1): ~7

x( 2): 2.73 The third . . .
y( 2): 1

output( 2): 3.73

x( 3): A fourth demand for x, for which the user
has not yet supplied a value.

In Appendix E we explain how these apparently endless computations can be made to terminate
in a graceful manner.

Another example program is the following:

hd( tl( L ) )
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When this program is evaluated it repeatedly demands values for L (which are assumed to be
finite lists) and outputs the head of their tail (i.e., the second element of the input list). This is
another example of a continuously operating program evaluation. For this program a listing of
the interaction between the user and the evaluator might look as follows:

L( 0): [42 7 5]

output( 0): 7

L( 1): [3 [2.4 8] 9]

output( 1): [2.4 8]

L( 2): [2]

output( 2): ? (the pLucid error object)
L( 3): [5 1 2]

output( 3): 1
...

...

Note that, given an input which is not a finite list of length at least one, the resulting output is
the error value ?.

One important property shared by the above examples is that they can all be thought of as
filters. The first example can be thought of as an addition filter, i.e., it takes two streams of inputs
and produces the stream of their sums. The following is a sequence of snapshots of the dataflow
computation:
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+3 · · ·

Note: in pLucid, negative numbers are prefixed by the symbol ~, as in ~8 (minus 8).

Similarly the second example is a combination of two filters. The first, called the tail filter,
takes one input stream and produces the stream of tails. The output of this filter is piped to
the input of the second filter, namely the head filter. This second filter produces as its output
the heads of the sequence of finite lists input. The following is a sequence of snapshots of the
computation:
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Simple filters like the above are usually memoryless, but there is no reason why this should
be the case for more complex filters. It is possible for a filter to produce as output values that
depend upon values already processed. An example of a filter with memory is one that takes as
input a sequence of numbers, one at a time, and produces as output the smallest and the largest
of the numbers read so far. Initially the program reads the first number and gives this number as
both the smallest and the largest read so far. Then it asks for the next input and, if this input
is smaller than the smallest, it replaces the old smallest and in addition is output as the current
smallest. If this input is larger than the largest, it becomes the largest and is output as the current
largest. In the case of it being the same value as the current smallest or the current largest, the
input is ignored. Note that if the input is anything but a number, then the output will be the
special error value. This program can be written in pLucid as follows :

[% "smallest", s , "largest", h %]

where

s = x fby if next x < s then next x else s fi;

h = x fby if next x > h then next x else h fi;

end

A sequence of snapshots of a computation is illustrated in the following diagram:
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Appendix B

Lucid Expressions

B.1 The where clause

The where clause is pLucid’s means of structuring programs, just as the block is the means in Algol
and Pascal. As mentioned earlier, a pLucid program is an expression, and is thus a composition
of subexpressions. To avoid horrendously long and complicated expressions, we use the where

clause to replace subexpressions by variables. For example, the following three programs are all
equivalent.

i. (x ** y) / (x**y div z)

ii. temp / (temp div z) where temp = x ** y; end

iii. temp1 / temp2

where

temp1 = x ** y;

temp2 = temp1 div z;

end

Moreover, where clauses may be nested to arbitrary depths. For example, the following two
programs are equivalent:

i. (x-2)*(x+3)+y+z

ii. a+b

where

a = w1*w2

where

w1 = x-2;

w2 = x+3;

end;

b = y+z;

end

In this last program, the expression a+b is called the subject part of the (outermost) where clause.
The body of this where clause consists of two definitions, the first defining a, and the second
defining b. The subject part of the innermost where clause is w1*w2, and its body consists of two
definitions, namely those of w1 and w2.

B.2 The operators next, fby and first

Variables in pLucid are similar to variables in most conventional programming languages. They are
dynamic objects in the sense that their values change as the program execution proceeds. Often,
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in the execution of a particular where clause, it is possible to think of an execution as a sequence
of steps in which the values of the local variables of the where are updated simultaneously. For
example, suppose we wish to write a program to read in a stream of numbers and output the
partial sums, i.e., after each number is read the sum of the numbers read so far is output. For
this we can use two variables, one called i, which at any step holds the last number read in, and
another called s, which at any step holds the sum of the numbers read so far. At each step in the
program execution, the variables i and s are updated. At any step, the next value of i is the next
value to be read, while the next value of s is the present value of s plus the next value of i. In
pLucid, s is defined as follows:

s = i fby s + next i;

This definition is read: The first value of s is the first value of i, while at any step in the program
execution, the next value of s is the present value of s plus the next value of i. The complete
pLucid program to generate the stream s of partial sums is:

s

where

s = i fby s + next i;

end

This program uses the two pLucid operators next and fby (pronounced “followed by”), which
we will now introduce. next is a prefix operator which, when applied to a variable at any step
in the execution, returns the value which that variable has after the next step of the execution.
Of course, in a conventional language we do not know what the next value of a variable will be;
however, in pLucid this value can be computed from the definition. For example, suppose that a
variable x is defined in terms of a variable y by the pLucid definition

x = next y;

then at any step in the program execution, the value of x will be the next value of y, i.e., the
value of y after the next execution step. Hence if, as we go through the execution steps, y takes
on successive values from the stream 2, 4, 6, 8, 10, . . . , then x takes on the successive values from
the stream 4, 6, 8, 10, . . . . Thus, x is 4 when y is 2, x is 6 when y is 4, and so on.

As well as being able to talk about the next value of a variable, we can also talk about the
next value of an expression. For example, suppose x and y are as above, then at any step the next
value of x+y will be the sum of the next values of x and y. So, if z is a variable such that at any
step z is the next value of x+y, then in pLucid z is defined by:

z = next(x + y);

Let us now turn our attention to the infix operator fby. As described earlier, in pLucid we
regard variables as dynamic objects, dynamic in the sense that their values change as the program
execution proceeds. In the programs we have introduced so far, the values of all the variables are
simultaneously updated at each computation step. In fact, for each variable we can talk about
the “stream of values” it assumes during the course of a program execution. For example, we can
interpret statements such as, “the variable x takes the values 2 followed by 4, followed by 6, etc.”,
to mean that after the first execution step x is 2, after the second step x is 4, after the third step
x is 6, and so on.

In general the infix operator fby may have the following form:

x = 〈expression1〉 fby 〈expression2〉 ;

This can be read as follows: The stream of values of x is the initial value of 〈expression1〉 followed
by each of the successive values of 〈expression2〉. An alternative reading is: The initial value of x
is the initial value of 〈expression1〉, and at any step in the program execution, the next value of x
is the present value of 〈expression2〉.
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The final operator to be introduced in this section is the prefix operator called first. For any
expression 〈expr〉, if the variable x is defined by

x = first 〈expr〉 ;

then at any step in the program execution, the value of x is the first (i.e., initial) value of 〈expr〉.
For example, suppose nat is a variable having the values 0 followed by 1, followed by 2, followed
by 3, etc. Then the expression, first nat, takes the values, 0 followed by 0, followed by 0, etc.
in other words, first nat is equivalent to the constant 0.

Now that next, fby and first have been introduced, we consider examples of their use. The
first example is a filter that produces as output the stream of integers 0, 1, 2, . . . .

nat

where

nat = 0 fby 1 + nat;

end

The program execution begins by producing the initial value of nat, i.e., 0. From then on, the
execution repeatedly adds 1 to nat and outputs the result. The filter just described is so useful
that the pLucid system supports a constant called index that produces the same values as the
above filter. Thus the following program:

index

is equivalent to the one above.
The next example is a filter that produces as output the stream of squares 0, 1, 4, 9, 16, . . . .

sq

where

nat = 0 fby 1 + nat;

sq = 0 fby sq + 2 * nat + 1;

end

As in the previous program the variable nat takes on the successive values 0, 1, 2, 3, . . . . The
first value of sq (i.e., the square of 0) is 0, while at any step the next value of sq is the present
value of sq plus two times the present value of nat plus 1. Note that we have used the fact that
for any n,

(n + 1)(n + 1) = n2 + 2n + 1

The next example is a filter that uses Newton’s algorithm to output a stream of approximations
to the square root of the input. Roughly speaking, the algorithm goes as follows: to calculate the
square root of a number n, take the first approximation to be 1, and thereafter take each successive

approximation to be
a+n

a

2 , a being the previous approximation. In pLucid we might code this up
as follows:

approx

where

approx = 1 fby (approx + first n / approx) / 2;

end

(For improvements on this example see Sections B.4 and B.5.)

B.3 User-defined functions (UDF’s)

Pointwise functions (or operators) in pLucid are similar to pure functions (i.e., functions without
side effects) in other programming languages. For example, the following program repeatedly
reads in integers and outputs the corresponding factorial.
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fac(n)

where

fac(n) = if n eq 0 then 1 else n * fac(n-1) fi;

end

The function fac defined in the body of the where clause can be thought of as a machine or black
box which continuously consumes values of n and produces values of fac(n). In other words it is
a filter in the UNIX sense, the only difference being that this black box filters integers rather than
characters. The following is a sequence of snapshots for a particular sequence of inputs:
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The filter produces each of the factorials fac(n) 1, 6, 24, 2 as n takes each of the values 1,
3, 4, 2. However, pLucid programmers are not restricted to only pointwise filters. A pLucid
filter may have internal memory and/or it may produce outputs at a different to that at which it
consumes inputs.

The following non-recursive udf has internal memory. It computes the average of the last three
numbers input.

avg3(input)

where

avg3(n) = avg

where

avg = (one + two + three) / 3;

one = n;

two = next n;

three = next next n;

// This is a comment

// A simpler way of writing this whole

// where clause would be as the following

// expression

// (n + next n + next next n)/3

end;

end

Another example of a program using a udf is one which reads in a stream of finite lists and
outputs a stream of the atoms in those lists, e.g., if the list [1, [3.7], true] is input, then the atoms
1, 3.7, and true will be output.

flatseq(x)

where

flat(x) = if x eq nil then nil
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elseif isatom(x) then x fby nil

else join(flat(hd x), flat(tl x))

fi;

join(x, y) = if first x eq nil then y

else x fby join(next x, y)

fi;

flatseq(x) = join(flat(first x), flatseq(next x));

end

The function flatseq consumes a stream of finite lists and produces a stream of all the atoms in
those lists, while the function flat consumes just one list and produces its atoms. The function
join consumes two streams of atoms for example 1, 2, [ ], [ ], [ ], . . . and 3, 4.75, [ ], [ ], [ ], . . .
and produces the stream 1, 2, 3, 4.75, [ ], [ ], [ ], . . . . The filters flat, join and flatseq could in
principle be implemented as three concurrently running processes. Note that flatseq produces
values faster than it consumes them, as for each list going into flatseq many atoms may be
produced as output.

Another example of a simple program with functions is the following. The program generates
the prime numbers using the sieve of Eratosthenes.

sieve(n)

where

n = 2 fby n + 1;

sieve(i) = i fby sieve(i whenever i mod first i ne 0);

end

B.4 The operators asa, whenever, upon and attime

B.4.1 asa

If asa were not a predefined infix operator it could be defined as follows:

asa(x, y) = if first y then first x

else asa(next x, next y) fi

Although this is a concise and precise way of defining asa, it may be better at this stage to give
a more operational description, such as the following. We can imagine that the asa operator
computes by repeatedly reading in pairs of values of x and y until (if ever) y has the value true.
Assuming a true is eventually read, then the value taken by the asa operator will be the value
of x corresponding to the true value of y. Moreover the asa takes on this value everywhere. In
this respect the asa operator can be thought of as a constant. For example, if x takes the values
0, 1, 2, . . . and y the values false, false, true, . . . , then x asa y takes the values 2, 2, 2, . . . .
Another example is if x takes the values abc, 3, [d, e], . . . and y the values false, true, false, . . . ,
then x asa y produces as output the stream of values 3, 3, 3, . . . .

(Actually, the pLucid evaluator implements asa in a more clever fashion than just described:
it does not try to compute the values of x which it does not need. But there is usually no harm
in imagining that it works in the manner described.)

The following program illustrates a use of the asa operator. The program is a slightly different
version of the Newton’s algorithm program of Section B.2.

(approx asa count eq 10) fby eod

where

approx = 1 fby (approx + first n / approx) / 2;

count = 1 fby count + 1;

end
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Given a number 42, say, as input (i.e., the variable n is a free variable in this program and is
therefore assumed to be an input variable), the program outputs the 10-th approximation to its
square root i.e., 6.48.

B.4.2 whenever

The predined infix operator whenever (sometimes written wvr) could be defined recursively as
follows:

whenever(x, y) = if first y then x fby z else z fi

where

z = whenever(next x,next y);

end

Again, at this stage, a more operational description will be of more benefit to the reader. The
operator whenever is best thought of as a process that filters out some elements (possibly none)
from the stream x according to a control stream (i.e., Booleans) y. In terms of machines (see the
factorial example in Section B.3) whenever repeatedly takes pairs of values for x and y; if y is
true then x is output and if y is false then x is discarded. For example suppose at each step in
the computation y takes on successive values from the stream true, false, true, false, . . . , i.e.,

y = true fby false fby y;

In addition suppose at each step in the computation x takes on successive values from the stream
0, 1, 2, . . . , i.e.,

x = 0 fby x + 1;

If x and y take on successive values as described above then, x whenever y will produce as
output successive values from the stream 0, 2, 4, 6, . . . of even numbers. The following is a pictorial
description of the computation:
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(For another example of whenever see the prime number program of Section B.3).

B.4.3 upon

The whenever operator is best thought of as a filter that selectively passes on values that it receives
as its input. The Lucid operator upon is a dual to whenever in the sense that it selectively ‘stretches
out’ its input stream by repeating some of the values that it receives. Again, we can give a concise
definition of upon in terms of a recursive user-defined function as follows:

upon(x, y) = x fby if first y then upon(next x, next y)

else upon(x, next y) fi;
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If we think of upon as a black box then we can describe its behavior as follows. The first output
of the box is whatever shows up as the first value of x. If the corresponding value for y is true
then the box will advance looking for the next value of x. However if the corresponding value of
y is false, the next value output will again be the current value of x. Thus our ‘black-box’ output
is controlled by the Boolean values sent along y. The following is an example of a program to
stretch out the stream 0, 1, 2, 3, . . . of natural numbers.

stretch

where

x = 0 fby x + 1;

y = true fby false fby y;

stretch = x upon y;

end

The following is a pictorial description of the computation:
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Another example of a program that uses upon is the following merge program. The streams
to be merged (i.e., xx and yy) are assumed to be streams of numbers in increasing order. Let us
define the stream associated with xx to be 2, 4, 8, 16, 32, 64, . . . , and the stream associated with
yy to be 3, 9, 27, 81, . . . . Then the ordered merge of these two streams will be the stream 2, 3,
4, 8, 9, 16, 27, 32, 64, 81, . . . . The following is the pLucid program that computes this ordered
merge:

merge

where

merge = if a < b then a else b fi;
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a = xx upon a eq merge;

b = yy upon b eq merge;

xx = 2 ** i;

yy = 3 ** i;

i = 1 fby i + 1;

end

B.4.4 attime

The last operator (filter) to be described is attime. If this were not a predefined infix operator
we could define it with the following udf:

attime(x, y) = (x asa index eq first y) fby attime(x, next y);

Note: index has been defined in Section B.2. In fact, using attime it is possible to give the
following non-recursive definition for upon and whenever.

wvr(x, p) = x attime t2

where

t1 = if p then index else next t1 fi;

t2 = t1 fby t1 attime t2 + 1;

end;

upon(x, p) = x attime t1

where

t1 = 0 fby if p then t1 + 1 else t1 fi;

end;

B.5 The is current declaration

In this section we introduce a pLucid construct that allows the programmer to write programs
which involve nested iteration. This construct is the is current declaration.

Suppose we wish to write a program which repeatedly takes pairs of non-negative integers and
raises the first to the power of the second, e.g., 2 to the power of 3 is 8. A typical approach to
designing such a program would be first to write a smaller program to produce the power of just
one pair of inputs, and second to embed this program in another that executes the first program
indefinitely. In pLucid the first program could be written as follows:

p asa index eq first n

where

p = 1 fby p * first x;

end

It is a simple loop program where, each time round the loop, p is multiplied by the first value
of x. The loop continues until index (which is a simple counter) equals the first value of n, at
which point the value of p is the first value of x raised to the power of the first value of n. We
now attempt to place this program within a nonterminating loop program. The resulting program
has two loops, one nested within the other; however, whenever the inner loop (i.e., the above
program) is executed, the expressions first n and first x would always have the same value.
Consequently the power of only the first pair of inputs would be repeatedly computed. Obviously
this is not what we require. We can try to resolve the situation by replacing first n and first x

by n and x, respectively. Unfortunately this does not help either since we require n and x to remain
constant during each execution of the inner loop. Thus we require that n and x be outer-loop
variables which only change between executions of the inner loop. This is clearly impossible when
we think of x, n, index, and p as variables which are all updated simultaneously. To overcome
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this problem we use the is current declaration with n and x in the above program. The effect of
this is to set up an outer loop in which x and n only get updated between executions of the inner
loop. The resulting program is the following:

p asa index eq first N

where

X is current x;

N is current n;

p = 1 fby p * first X;

end

Note the informal convention used, i.e., that the variables that are introduced by an is current

declaration use upper case. Although any variable name could have been used, the use of upper-
case letters makes programs involving nested iterations easier to understand. The inner loop
variable X only ever has one value which is the current value of x, hence as index and p get
updated, X stays constant. Similarly N, the current value of n, stays constant during the execution
of the inner loop. Remember, x and n are outer-loop variables, while X and N are inner-loop
variables which restart life anew at the beginning of each inner-loop execution. In general, the
effect of the is current declaration is to set up a nested iteration.

An improvement in the above program is to replace first X by X and first N by N. This
does not change the meaning of the program as X and N remain constant during each execution of
the inner loop. This results in the following program:

p asa index eq N

where

X is current x;

N is current n;

p = 1 fby p * X;

end

Now, suppose we had wanted to write a program which took a power (the first value of n) and
then raised each of a sequence of inputs to that power, e.g., it might compute the squares of all
its inputs. The program would then use is current with x but not with n.

p asa index eq first n

where

X is current x;

p = index fby p * X;

end

Note that the expression first n cannot be replaced by n, as n is a variable that is active in the
inner loop, and we require n to be the same for each execution of the inner loop. In a similar
way, we can write a program which takes an integer (the first value of x) and raises it to each of
a sequence of powers, e.g., it might compute powers of 2. The program uses is current with n

and not x.

p asa index eq N

where

N is current n;

p = 1 fby p * first x;

end

As with n in the previous program, we cannot replace first x by x.
Another example of a program using is current is one to calculate the exponential ex using

the series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

The program is
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expsum asa next i eq 10

where

X is current x;

i = next index;

term = 1 fby (term / i) * X;

expsum = 0 fby expsum + term;

end

The body of the outer loop asks for the present value of x to be input, and then outputs an
approximation to ex. The inner loop takes the current value of x, i.e., X, and computes an
approximation to ex by adding the first ten terms of the above series. The body of the inner loop
computes the next term of the series and adds it to expsum. Hence each time the inner loop is
called it executes its body ten times. If the stream of values 1, 2, 0.5, −1, . . . are the inputs for x
then the stream 2.718, 7.389, 1.649, 0.369, . . . will be output.

The next example is an improvement of Newton’s algorithm for computing a square root given
in Section B.1. Given a stream of numbers, we compute approximations to their roots by applying
Newton’s algorithm to each of them 10 times.

approx asa count eq 10

where

X is current x;

approx = 1 fby (approx + X / approx) / 2;

count = 1 fby count + 1;

end

Inputting the numbers 2, 2.213, 26.7, . . . produces the stream 1.414, 1.487, 5.167, . . . as output.
The general form of the is current declaration is:

〈variable〉 is current 〈expression〉;

Our next example uses is current in its more general form, namely with an expression on the
right-hand side. It computes the roots of the polynomial

ax2 + bx + c = 0

in the obvious way, calculating the square root as in the previous example. The roots are output
as a two-element list.

[% r1, r2 %]

where

r1 = (-b + sqroot) / (2 * a);

r2 = (-b - sqroot) / (2 * a);

sqroot = approx asa count eq 10

where

X is current b * b - 4 * a * c;

approx = 1 fby (approx + X / approx) / 2;

count = 1 fby count + 1;

end;

end



Appendix C

The pLucid Data Types

So far we have described the Lucid operators which are available in pLucid. Such operators are
common to all members of the Lucid family of languages. Each particular member of the family
is distinguished by the choice of data types on which the Lucid operators are applied. However,
the members of the Lucid family are typeless, in the sense that there are no type declarations and
no type checking at compile-time.

The data types of pLucid are integers, reals, words, strings, finite lists—the basic types
of POP-2. In addition, there are two special objects, error and eod . In this section we give
a brief informal introduction to pLucid expressions using these types (for more formal details see
Appendix F).

C.1 Numeric expressions

Numeric expressions in pLucid are basically the same as in most other programming languages
supporting mixed integer and real arithmetic. Numbers, i.e., reals and integers, are represented
by numeric constants. As with APL, pLucid distinguishes between the sign of a number and
the operator applied on that number. The binary subtraction operator on numeric expressions is
represented by the symbol -; but the negative sign of a numeric constant is represented by the
symbol ~. The symbol + is the binary addition operator on numerics, but the positive sign for
numeric constants should not be written, as it is assumed by default. For example the following
are numeric constants

1 42 ~6 1.0 ~5.324 42.127

the following are not numeric constants

+2 -4 -1.0 .12

At present there is no provision in pLucid for the exponent representation of reals.

Apart from the additional operator isnumber, pLucid’s numeric operators are essentially the
same as those in most other programming languages.

isnumber is an operator which tests its argument to see if it is numeric. It returns the word
true if its argument is either an integer or a real, and returns the word false otherwise. For
example, the following program checks whether its input is a number. If it is, it outputs the
square of that number, then asks for the next input, and so on. If the input is not a number the
program outputs an error message:

if isnumber(x)

then x*x

else ‘The input was not numeric\n’ fi

185
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To finish this section on numeric expressions we will, by way of examples, describe the pLucid
division and modulus operators. The remaining numeric operators need no explanation beyond
that given in Appendix F.

pLucid has two division operators; div for integer division, and / for real division. For any
numbers n and m, n div m is the largest integer such that (n div m) ∗m is not greater than n.
The following are example pLucid expressions together with their equivalent integer constants.

12 div 5 is equivalent to 2

60 div ~5 is equivalent to ~12

The second division operator is for real division. / accepts numeric operands and yields a
numeric result, e.g.,

123 / 5 is equivalent to 24.6

0.123 / 0.123 is equivalent to 1

~1.0 / 3 is equivalent to ~0.33333

Remember that the accuracy of / is dependent upon the accuracy of the pLucid implementa-
tion.

The modulus operator mod is the mathematical modulus function. For any numbers n and m,
n mod m equals n−m ∗ (n div m).

For example,

9 mod 5 is equivalent to 4

~9 mod 5 is equivalent to ~4

4.5 mod 1.2 is equivalent to 0.9

C.2 Non-numeric data processing

Besides numeric computation, pLucid allows non-numeric data processing. This is done using the
types word, string and finite list. These types, which are similar to those in POP-2, are discussed
in this section.

C.2.1 Word processing

A word is determined by a sequence of characters of one of the following forms,

• an arbitrarily long sequence of alphanumerics starting with a letter (e.g., this, t23r , Warwick)

• an arbitrarily long sequence of signs, where a sign is one of

+ - * / $ & = < > : # ^

• a bracket, where a bracket is one of

( ) (% %) [% %]

• a separator, where a separator is either ; or ,

• a period

• a double quote.

The following are examples of words

yes true . " %] ++ , false

A word constant is simply a word enclosed in double quotes. For example, the pLucid word
constants representing the above words are
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"yes" "true" "." """ "%]" "++" "," "false"

The distinction between words and word constants is important and must be clearly understood.
The following example is instructive:

"fred"

is a word constant representing the word fred . On the other hand

fred

is an identifier (i.e., a variable).
Word constants, like other constants, are pLucid expressions, and can be used to define values

for variables in programs. For example, the definition

x = "dog";

defines the value of the variable x to be the word dog .
The Boolean values in pLucid are the words true and false, i.e., they obey the rules for the type

word, i.e., isword(true)=true and isword(false)=true. Note the programmer may assume that
the variables true and false have been predefined to the words "true" and "false". Thus it is
as if every pLucid program has the following definitions included automatically:

true = "true";

false = "false";

However, for the sake of clarity, we shall talk about these two special words separately in Sec-
tion C.2.2.

Beside those operators described in Section C.2.2, which apply to the words "true" and
"false", there are four other operators applicable to words in general. These operators are
isword, mkword and the polymorphic operators eq and ne which are used to compare words.

The operator isword recognizes words, it yields "true" if its argument is a word, and "false"

otherwise. For example :

isword ("pLucid")

is the word "true",

isword (123)

is the word "false", as the argument is a number.
The operator mkword, read make word, takes a string as an argument. If the characters in this

string make up a legal word it returns that word. Otherwise, it returns the error object. For the
definition of what a string is, see Section C.2.3. The following are some examples of the use of the
operator mkword:

mkword (‘this’)

has the same value as the word constant "this",

mkword (‘this ’)

returns the error object,

mkword (‘123’)

returns the error object.
The binary operators eq and ne are for comparing two words. eq returns the word true if its

arguments are equal, and returns false otherwise. ne returns true if the arguments are different,
and false otherwise. It is worth mentioning here that these operators can be applied to any data
objects in pLucid data types. For example :
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(z eq "dog") or not (isword (z))

can be viewed as a filter with input z.

z

�� ��
eq "dog" isword

not

or
�� ��

��

The above machine continuously asks for inputs. If the input is neither a word nor the word dog ,
then the output is the word true, otherwise the output is false.

C.2.2 Boolean expressions and predefined variables

The pLucid programmer is provided with six predefined variables (actually they are constants,
because they cannot be redefined). These variables are index (discussed earlier), true, false,
nil, error and eod. The variables true and false have as values the words "true" and "false"

respectively. The value of the variable nil is the empty list. It is as if the pLucid programmer
has the following definitions included in his program.

true = "true"

false = "false"

nil = [ ]

The variable error has as its value the error object and the variable eod has as its value the eod
(end of data) object. For the definitions of these last two objects, see Section C.3.

PLucid has the usual Boolean operators, namely or, not and and. These operators yield
their usual Boolean results when applied to the words true and false. However when one of their
arguments is neither true nor false the operators may yield the error object. For further details,
see Section C.3.

Apart from many of the usual logical operators found in other languages, pLucid includes the
operators isnumber, isword, isstring, isnull, isatom, iserror, and iseod. These will be
defined in the appropriate sections.

C.2.3 String processing

A string, in pLucid, is determined by a sequence of zero or more ASCII characters. Strings must
not be confused with words, they form a completely different data type. Any attempt to apply a
string operator on a word, or vice versa will yield the error object.

Every string in pLucid can be represented by a string constant. A string constant representing
a given string is obtained by first replacing each character by its pLucid representation, and
secondly enclosing the resulting sequence between ‘ and ’. For example, the following are string
constants:
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‘:: yes, ~ #’

‘this is a string ? ’

‘pLucid is non procedural ’

For string processing in pLucid, we have the following operators: isstring takes one argument
and returns the word true whenever this argument is of type string; otherwise it returns the word
false.

^ (string concatenation)

The operator ^ is the string-concatenation operator. It takes two strings and forms a new one by
concatenating the second to the end of the first. However, if one of its arguments is not a string
it yields the error object.

substr

The operator substr, read as substring, takes three arguments. The first of which is a string, and
the other two are integers. These two integers determine a range for extracting a substring from
the first argument of substr (the first argument must be a string). Hence, the first integer should
be less than or equal to the second, which should be less than or equal to the length of the string.
Mathematically, the operator substr can be defined as follows:

If the value of the string S is the sequence of characters S1S2 · · ·Sn, where k and m
are integers such that k ≤ m ≤ n, then substr(S, k,m) = Sk · · ·Sm. Otherwise, the
result will be the error object.

mkstring

The operator mkstring, read as make string, takes its argument, which should be a word, and
makes a string out of it. If the argument is not a word, the result will be the error object. Consider
the following example pLucid expressions and their equivalent string constants

mkstring("hello")

gives ‘hello’,

mkstring("t1239")

gives ‘t1239’,

mkstring(123)

yields the error object.

length

The operator length returns the length of a string, that is, the number of characters contained in
the string. Note that internally characters are stored unescaped. That is to say that \b, backspace,
is not stored as two characters, backslash and b, it is stored as the character backspace.

Note: length can be applied to words and lists as well as to strings.

Examples

The following is an example program that takes one input x, and checks whether or not it is a
string.

if isstring x

then x ^ ‘ is a string well done’

else ‘Sorry it is not a string, try again’

fi
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If x is a string, the program outputs x concatenated to the string

‘ is a string well done’

Otherwise the program outputs

‘Sorry it is not a string, try again’

C.2.4 List processing

The third non-numeric type in pLucid are the finite lists. A list in pLucid is essentially a sequence
of zero or more items, each of which is either a number, a word, a string, or a list. The lists in
pLucid are almost identical to those of POP-2 and (therefore) also very similar to those of LISP.

List constants

A list constant is a sequence of items enclosed in square brackets. Each of these items is either a
numeric constant, a word constant less the quotes, a string constant, or a list constant. Quotes,
single and double, around string and word constants act as delimiters. However, it is obligatory
in pLucid to write the string quotes, while it is necessary to drop the quotes of the word constants
when written as items in a list constant. Whenever ambiguity occurs, a space can be used to
separate two successive words. So the following two list constants have the same value

i. [" dog "]

ii. ["dog"]

but the following do not

i. ["dog"]

ii. [dog]

Moreover, the following two list constants are different

i. [ this is pLucid ]

ii. [‘this’ is pLucid]

because the sequence of letters, this, occurs in the first list as a word constant, while in the second
it is a string constant.

A list expression is either an expression built up using the :: (cons) operator or a sequence
of zero or more pLucid expressions enclosed in %-square brackets ([% and %]) and separated by
commas. To make this clearer, consider the following examples:

1. The following are expressions in pLucid, as they are all constants,

"dog" ‘c a t’ [this is pLucid]

The list expression, built from these expressions, can be written as

"dog" :: ‘c a t’ :: ("this" :: "is" :: "pLucid" :: nil) :: nil

[% "dog", ‘c a t’ , [this is pLucid] %]

The value of either list expression is equal to the value of the list constant

[ dog ‘c a t’ [this is pLucid] ]

2. The value of the list expression
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[% i+3 , tl (y) , ‘S T R’ , [% "programming" %] %]

depends on the values of i and y. Assuming that i equals 2 and y is the list [ hello world ],
then the list expression above will be equivalent to the constant

[ 5 [world] ‘S T R’ [programming] ]

3. The sequence of characters [% "dog" %] in the list constant

[ the [% "dog" %] sat on the mat ]

is not a list expression, it is a sequence of five word constants, each of which is considered
as an item in the main list. Note that every item in a list constant should be a constant.

pLucid facilitates list processing by means of the following four operators.

hd

The prefix operator hd, read as head, yields as its result first element of the argument list. This
may be a word, a number, a string, or a list. When the argument to hd is a list of one element,
the result will be that element. If the argument to hd is either the empty list or a non-list, then
hd yields the error object.

tl

The prefix operator tl, read as tail, yields as its result the argument list but with its head (i.e.,
the first object in the list) removed. Unlike hd, the tail operator yields the empty list when its
argument is a one-object list. If the argument is either the empty list or a non-list, tl yields the
error object.

<> (append)

The infix operator <>, read as append, takes two lists and yields a new list constructed by appending
the second list to the end of the first. If one of the arguments is a non list, it yields the error
object.

:: (cons)

The infix operator ::, read construct, yields (constructs) a new list from its two arguments, the
right argument must be a list. The new list has as its head the left-hand argument and as its tail
the right-hand argument. If the right argument is not a list, the result will be the error object.

eq and ne

The operators eq and ne are for comparing data items in pLucid, and have been explained before.

isnull

The operator isnull which takes a list and returns the word true if the list is the empty list, and
false if it is not. It returns the error object if the argument is not a list.

isatom

The operator isatom returns true if its argument is not a list, and false otherwise.
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islist

The operator islist returns true if its argument is a list, and false otherwise.

Examples

The following examples illustrate the use of hd:

([hello world])

has the same value as the word constant "hello",

hd([% [this ’is‘] pLucid %])

has the same value as the list constant [this ‘is’],

hd([ [[a b] c] d [e] ])&

has the same value as the list constant [[a b] c].
The following expressions return the error object:

hd([])

hd is applied to the empty list,

hd("this")

the argument is not a list,

hd(nil)

the argument is the empty list.
The following examples illustrate the use of tl:

tl([hello world])

has the same value as the list constant [world],

tl([hello [world] ])

has the same value as the constant [[world]],

tl([ programming ])

returns the empty list nil ,

tl( [% 1+3, ‘S T R’, [% "programming" %]

has the same value as the list constant [‘S T R’ [programming]].
The following expressions return the error object:

tl("what")

the argument is not a list,

tl(nil)

the argument is the empty list.
The following examples illustrate the use of the operator <>:

[[pLucid] is a] <> [ [non] procedural language]

has the same value as the list constant, [[pLucid] is a [non] procedural language],

[Lucid ] <> ‘with POP2’
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returns the error object as one of the arguments is not a list.
The following examples illustrate the use of the construction operator ::

[programming] :: [languages]

has the same value as [ [programming] languages ],

‘pLucid is’::[ Lucid]

has the same value as [‘pLucid is’ Lucid],

[the language] :: [% "Iswim" ,700 , ‘iteration’ %]

has the same value as [[the language] Iswim 700 ‘iteration’],

‘##87’ :: nil

returns the list constant [‘##87’],

[pascal] :: ‘triangle’

returns the error object, because the second argument is not a list.

Example

Any expression above, whether it is a constant or an operator with some operands can be written
as a program by itself, for example the expression

hd(x)

is a program which repeatedly asks for values for the variable x, expecting each to be a list, and
producing as output the head of each. It yields the error object if the input is not a list. The
program could be thought of as a filter for which a typical computation sequence might be as
follows:

[[ ] 3]

��

[ ]

��

[‘hi’ 3]

�� ��
hd

��

+3 hd

[ ]

��

+3 hd

error

[ ]

��

+3 hd

‘hi’

error

[ ]

��

+3 · · ·

Example

When the program

rotate

where

t = x fby tl t <> z ;

z = hd(t) :: nil ;

rotate = if t eq first x and counter ne 0 then eod else t fi;

counter = 0 fby counter + 1 ;

end
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is run on the machine, it will ask for a value for the variable x, expecting it to be a list. Then it
produces all the possible rotations for this list. Instead of asking for the next value of x, it gives
the object eod , which terminates the whole program. So supplying the list constant [a b c d] as
an input, the program will give the result

[a b c d]

[b c d a]

[c d a b]

[d a b c]

and then terminates.

C.3 The objects eod and error

Among the data types of pLucid there are two special types which are completely distinct. These
are the error and eod (each could be considered as constituting a separate data type on its own).

The object error

We have mentioned, while defining the data types of pLucid, the cases where an operator yields the
object error . Informally speaking, the error object results from applying an operator of certain
type to operands which are of types different than the ones which such an operator expects. For
example, trying to add two words, find the head of a string, or divide a number by a list.

In a program we represent the object error by the predefined identifier error. Hence, the
value of the expression

error

is the stream of error objects. It is worth noting here that, the above expression differs from the
expression

"error"

The first represents the error object, while the second is the word constant representing the word
error .

While the object error is represented, in a program, by the predefined identifier error, its
representation as an input, or as an output, is dependent on the implementation of the language.
In the Warwick implementation it is represented by the symbol ‘?’. (For further details, see
Appendix E.)

The object eod

In a program, this object will be represented by the predefined identifier eod. Unlike the object
error , trying to output the object eod will cause the machine to terminate the execution of the
program. For example, the program

1 fby 2 fby eod

will output the numbers 1, 2 and then terminate. The representation of the eod object as an input
is again dependent on the inplementation. In the Warwick implementation it is represented by the
character control-D or the at character (See Appendix E for more details). Again, the distinction
between the eod object represented by the reserved identifier eod, and the word eod represented
by the word constant "eod", should be clear.

Furthermore, the special objects error and eod are not considered as proper constants. Hence,
they cannot be written as items in list constants, as such items must be constants. So the items
in the list constants
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[ error ] [ eod ]

are, respectively, the words error and eod . Of course, they can appear in [% %] expressions, but
the value of any such expression will be error or eod .

Examples

The value of the list expression

[% error %]

is the error object. This is because the above list expression is really an abbreviation of the
expression

error :: nil

which evaluates to the object error . However, the value of the list expression

[% "error" %]

is a list of one item. This item is the word error .
Similarly, the value of the list expression

[% eod %]

is the object eod .

[% "eod" %]

is a list of one item. This item is the word eod .
If the argument to an operator is the object eod (or the object error) then, except for certain

operators, the object yielded by that operator will be the object eod (or the object error). The
only prefix operators that yield values other than eod or error when one of their arguments is
eod or error are iserror and iseod. These operators are for recognizing the objects error and
eod . When the argument of the operator iserror is the object error , it yields the word true. If
the argument is the object eod it yields the object eod . Otherwise it yields the word false. On
the other hand, when the operator iseod is applied to the object eod it yields the word true.
Otherwise it yields the word false.

The Boolean operators and and or can also return values other than eod and error when given
these two objects as arguments. The result of applying these operators to the objects error and
eod are given in the following table.

It is worth mentioning here that these operators are commutative, i.e., the following two rules
hold for any ‘defined’ P and Q:

P or Q = Q or P

P and Q = Q and P

Unfortunately, this rule may fail if one of the computations required to produce P or Q fails to
terminate. This is because the pLucid evaluator is sequential and evaluates the first operand
before the second. If this first computation fails, no value is produced, even if the value of the
second operand is available and determines the overall result.

P Q P and Q P or Q

true error error true

false error false error

true eod eod true

false eod false eod

error eod eod eod

error error error error

eod eod eod eod
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C.4 pLucid conditional expressions

The simplest conditional expression in pLucid is the expression if–then–else. The expression

if 〈expr1〉 then 〈expr2〉 else 〈expr3〉 fi

expects the values of 〈expr1〉 to be of type Boolean, while the values of 〈expr2〉 and 〈expr3〉 could
be of any type. The pLucid conditional expression works as the logical function if–then–else.
It evaluates the expression 〈expr1〉, if it is the word true the result will be the value of the
expression 〈expr2〉, and if it is false the result is the value of 〈expr3〉. If the expression 〈expr1〉
is not a Boolean, i.e., its value is not a truth value, the if–then–else expression will output the
error object. The word fi appearing at the end in the above expression is a terminator for the
if–then–else expression.

Example

The pLucid program

if X <= Y then Y else X fi

asks for the values of X and Y as inputs. It evaluates the expression X <= Y, if it is true it returns
the value of Y, if false it returns the value of X. If one of the inputs is not numeric it outputs the
error object. Then it asks for new values for X and Y, and so on. This expression could be used to
define a function which takes two arguments and yields their maximum by writing

max (X,Y) = if X <= Y then Y else X fi;

pLucid conditional expressions could be nested to many levels by using the reserved word
elseif instead of else. The word elseif acts as else for the outer if expression and as if

for the new one, i.e., there is no need to write the word if after elseif, and no need for the
corresponding fi’s. Hence the expression

if x then y

elseif z then m

elseif n then q

else r fi

is equivalent to the expression

if x then y

else if z then m

else if n then q

else r

fi

fi

fi

Example

The following is a legitimate expression in pLucid, it expresses a simple salaries system,

if (status eq "single") then basicsalary

elseif (status eq "married") then basicsalary * 1.30 + children * 40

else specialsalary fi

When this program is run the evaluator asks for a value for the variable status. If the value of
status is the word single, it asks for the value of basicsalary and outputs it. If the value of
status is the word married , it asks for the values of basicsalary and children, then outputs
the value of the expression basicsalary * 1.30 + children * 40. Otherwise, it asks for the
value specialsalary and outputs it. Then it asks for the next value of status, and so on.
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pLucid case Expression

Another way of writing conditional expressions in pLucid is by using the pLucid case expression.
The case expression provides a clearer way for writing long nested if expressions. The example
above could be written using the case expression as follows:

case status of

"single" : basicsalary;

"married" : basicsalary * 1.30 + children * 40;

default : specialsalary;

end

The case expression consists of two parts, the selector part and the case body. The selector part
is the expression which comes between the words case and of, see the above example. The case

body is a list of switches, terminated by the word end. Each switch is of the form

expression : expression

and must be terminated by a semicolon. One of these switches should be the default switch,
which is a switch whose left-hand side is the word default (it must appear last). Evaluation of
the case expression proceeds as follows: the selector part, which is an expression, is evaluated,
then its value is compared with the value of the left-hand-side expression of each switch in the case
body. If there is an expression which is equal to the selector, then the value of the right-hand-side
expression of that switch is the value of the case expression. Otherwise, the value of the case

expression is the value of the expression to the right of the word default. In the event of two
expressions in the case body with the same selector value, the first one to appear in the list is
chosen.

The case expression, like the if expression, could be nested to many levels. This is done by
writing another case expression as the right-hand side of a switch in the outer case expression.
For example, suppose we want to split the case of being married in the above example, so we write

case status of

"single" : basicsalary;

"married" : case arechildren of

"none" : basicsalary * 1.20;

"many" : basicsalary * 1.30 + numchildren * 40;

default : ‘there is an error in your data\n’;

end;

default : specialsalary;

end

pLucid cond Expression

Another way of writing conditional expressions in pLucid is by using the pLucid cond expression.
The cond expression provides a clean mechanism for the writing of long nested if expressions.
The example above could be written in terms of the cond expression:

cond

status eq "single" : basicsalary;

status eq "married" : basicsalary * 1.30 + children * 40;

default : specialsalary;

end

The cond expression consists of a body which is a list of switches, terminated by the word end.
Each switch is of the form

expression : expression
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and must be terminated by a semicolon. One of these switches should be the default switch, which
is a switch whose left hand side is the word default. Evaluation of the cond expression proceeds
as follows: the expressions to the left of the : are evaluated from top to bottom and if one is found
to be true then the value of the cond is the expression on the right hand side of the : and if no
expression to the left of a : is true then the value of the cond is the default value. In the case of
there being two expressions in the cond body that are true then the first encountered is chosen.

The cond expression, like the if and case expressions, can be nested to many levels.



Appendix D

Scope Rules

The scope of an occurrence of a variable, in a pLucid where clause, is either local or global. It is
local if the relevant declaration or definition is in the same clause. The only declaration we have
in pLucid is the is current declaration. The variable occurring to the left of the declaration is
local to that clause, while any variable occurring in the expression to the right occurs globally.
Moreover, if a variable is neither declared nor defined in the clause then any occurrence is global.

If an occurrence is global to a clause, its value is expected to come from an outer clause, the
first outer clause in which that variable is local. This also applies on the outermost clause. If a
variable is left global in that clause, its value is supposed to come from an outer clause, which is
the user environment. Consequently, the machine asks for that value as an input. For example:

X + y + z

where

X is current x + y;

y = 12 + z;

end

The occurrences of X and y in X + y + z are local to the where clause, as is the first occurrence of
X in X is current x + y. Also y in y = 12 + z is local. The occurrence of y and the occurrence
of x in X is current x + y are both global to the clause, as is that of z in y = 12 + z.
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Appendix E

Running pLucid Under UNIX

E.1 The Basics

This section of the manual explains how a pLucid program runs in the UNIX environment.
The pLucid evaluator is itself a UNIX process and as such has associated with it an input

stream (the standard input), an output stream (the standard output) and an output stream for
reporting of errors (the standard error). On most implementations of UNIX the standard input is
associated with the user’s keyboard and the standard output and standard error with the user’s
screen. It is possible in UNIX to redirect input and output to places other than the screen and
keyboard and the reader is refered to the UNIX manual. The following diagram shows how the
pLucid evaluator interfaces with the user:

User keyboard
STDIN // pLucid Evaluator

STDOUT //

STDERR //
User screen

Many useful pLucid programs never need use more than these three basic streams. The filter
operator decribed in the next section explains how more input and output streams may be asso-
ciated with a pLucid program.

Let us begin with the most trivial of pLucid programs namely the expression

x

In this simple program there is no definition for x, in other words x is a free variable of the
expression. In pLucid each free variable occuring in an expression is associated with its own
pLucid input stream and all pLucid input streams take their input from the standard input (see
above). Thus if we run the above program the following prompt will appear on the screen

x(0):

(Prompts for input and output are sent along the standard error, thus they can be discarded if
they are of no help.) If we input a constant such as 4.3, [ 2 3 [ 4 ]], ‘a string’, or the word
fred, then our program will echo the input, e.g.,

x(0): 4.3

output(0): 4.3

x(1): [ 2 3 [ 4 ]]

output(1): [ 2 3 [ 4 ]]

x(2): ‘a string’

output(2): ‘a string’

... ...

... ...

201
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Note that when words are input, such as the input for x(2), they must be input unquoted.
Thus if we input nil then we are inputting the word nil and not the empty list. To input the
empty list we use square bracket notation, i.e., [].

Similarly, if we want to input the special object error , we shall use the symbol ?, e.g.,

x(3): ?

output(3): ?

The special object eod is input as control-D (or whatever the local UNIX convention is for end of
file), e.g.,

x(4): ^D

%

where % is the UNIX shell prompt. Thus the special object eod can be used to gracefully terminate
the evaluation of a continuously operating program. What is in effect happening is that the pLucid
input stream associated with x is closed after an eod has been read. All future inputs on that
particular pLucid stream are assumed to be eod .

E.1.1 Pop input versus character input

In UNIX processes communicate to each other by sending streams of characters. For example,
the date command sends a stream of characters on its standard output to the user’s screen. This
stream of characters is that which makes up the current date and time. In pLucid, there are no
objects of type character, so how does pLucid manage to run in the UNIX environment?

When a pLucid program is run, it normally expects all of its inputs and outputs to be either
numbers, words, strings or finite lists, succussive inputs and outputs being separated by white
space. However there are options available that allow input or output or both to take a different
form.

E.1.2 Character input

In this mode the values read from the standard input are assumed to be raw characters. As far as
the pLucid program is concerned, a character is a string of length one. Note that these characters
may include control characters and non-printable characters. These characters are represented in
pLucid strings by the following escape sequences.

‘\b’ for backspace
‘\n’ for newline
‘\t’ for tab
‘\f’ for formfeed
‘\r’ for carriage return
‘\\’ for \
‘\’’ for ’

In addition an arbitrary byte-sized bit pattern can be generated by writing

‘\DDD’

where DDD is one, two or three octal digits. For example:

‘\014’ is formfeed
‘\33’ is the character escape

The option for running the evaluator in character input mode is given in the UNIX manual
entry (the -c option). Note that Pop and character input cannot be mixed. Programs that use
only the basic input stream must be evaluated either in Pop input mode or character input mode.
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E.1.3 Character output

This mode is similar to the normal output mode except that there is no white space to separate
successive outputs, string constants are stripped of their quotes, and escaped characters such as
\n and \33 are output as the characters they denote. The option for running the evaluator in
character output mode is given in the UNIX manual entry (the -s option). Again programs must
be evaluated either in Pop output mode or in character output mode.

E.1.4 A simple program

The following is an example of a pLucid program (or filter) to compress the blanks in a file:

input whenever not (input eq ‘ ’ and next input eq ‘ ’)

reads from the standard input, character by character, taking each character to be a string of
length one. If we want output in character form, then the -s option must be used. If we type the
above program into a file called compressblanks, we can then compile this program to get the
pLucid intermediate code in the file compressblanks.i. When we run the evaluator as follows:

luval -c -s compressblanks.i < text

the result is that the file text will be printed on the screen with all blanks compressed.

E.1.5 More than one free variable

In the following program

x or y

there are two free variables, x and y, and thus the evaluator associates with each variable it’s own
pLucid input stream. To evaluate the program, successive values for x and y must be obtained
from the user. The first value required is the first value for x, this is because the or operator
evaluates its argument left to right, e.g.,

x(0): true

y(0): false

output(0): true

x(1): ...

If the object eod is input as a value for one of these variables, say x, the effect will be to close the
input stream for that variable. Nevertheless, this does not terminate the program, as according to
the algebra associated with pLucid, eod or true = true. Thus if the evaluator receives eod as input
for x it will close the stream associated with x (i.e., all future input on x are eod). However since
the input stream for y is still open and since, given eod as its first argument, the or operator need
not terminate, the evaluator will demand the next input for y. If the input is true the evaluator
outputs true and continues evaluation. Note that values of x will no longer be required since the
input stream for x is closed. Thus only values of y are demanded and so long as these values are
true the computation continues, any other value for y will cause the program to terminate.

A simpler example of a program with two free variables is

x + y

When this program is run, it will ask for values for the variables x and y. If one of the input
values for x or y is eod then the program terminates. This is because in the algebra associated
with pLucid, eod + z = eod for any value z.
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E.1.6 pLucid programs as standard UNIX processes

As pLucid programs run as standard UNIX processes we can do all the usual things:

luval lex.i < filename

if the file lex contains the program

x

then this will read in constants (i.e. [ 1 [2 3] 4], ‘a string’, 3.33, ~9) from file filename

and output them to the terminal. Similarly

luval lex.i > filename

will read constants one by one from the terminal and output them to the file filename. We can
also combine these to read constants from one file and output then to another. Our program is
then in effect a filter.

luval lex.e < file1 > file2

E.2 The filter and arg operators

The filter function enables pLucid programs to interact in a simple manner with many useful
UNIX utilities. The filter function takes the following form:

filter(expression1, expression2, expression3)

The evaluation of a filter expression entails the following. Firstly evaluate expression1, which
should evaluate to a string. This string is taken to be the name of a UNIX process. The pLucid
evaluator then spawns a UNIX process named by this first argument. The second argument to
the function filter is the stream of values that are to be sent to the standard input of the newly
created process. Values produced by the newly created process are passed along its standard
output back into the pLucid program and appear as the result of the function filter. The third
argument of filter should again be of type string. This string is used to specify how the pLucid
program is to interact the process spawned by filter. The options for this are as follows:

‘s’ Write to the stream associated with output to the filter in character output mode.

‘c’ Read the stream associated with input from the filter as a stream of raw charaters. That is,
use character input to read the stream produced by the process spawned by filter.

‘i’ The filter requires no inputs.

‘p’ For every input sent to the filter it will guarantee to return one value, i.e., the filter is
pointwise.

The third argument can be the empty string ‘’, which means that input and output to this
filter should be in Pop mode. Note that the above options can be combined in the same string,
e.g., ‘csi’. The last two options have been included for reasons of efficiency, it is beyond the
scope of this manual to explain why they are needed. The following diagram illustrates what
happens when a filter is spawned by a pLucid program:



E.3. RUNTIME ERRORS 205

Filter’s STDIN

OUTPUT stream from evaluator

FILTER//

INPUT stream to evaluator

��

Filter’s STDOUT

STDIN //
// STDOUT

pLucid Evaluator
// STDERR

. . . . . . . .

Note that due to the UNIX limitations on the number of processes and pipes that can be active
at any one time, it is not advisable to include a filter function in a recusive function definition
where it can be called upon to spawn large numbers of processes.

Note: the filter function may also be used to interface programs written in other languages
with a pLucid program. The only requirement is that the process written in the other language
acts as a filter with respect to its input/output behavior. This means that programs written in
assembly language, Pascal, Fortran, PL/1, . . . can be used in conjunction with a pLucid program.

E.2.1 An application of the filter function

In pLucid it is possible supply a program with input from a file via the standard input. For many
applications this method (i.e., luval prog.i < filename) is not satisfactory because it forces
the standard input to be the named file. One way around this problem is to use the filter

function which does not interfere with the evaluator’s standard input. The following function
can be included in a pLucid program. The function file expects its argument to evaluate to a
string, which it takes to be the name of a file. The function then returns the stream of characters
contained in the named file terminated by the eod object.

file(name) = filter(‘cat <’ ^ filename, ‘’ , ‘ci’)

where filename = first name; end;

This facility means that we can choose dynamically the name of the files from which we require
input.

E.3 Runtime errors

If a pLucid program compiles then the only errors that can occur at runtime will be type-clash
errors or errors that occur from giving a program strange inputs. A runtime type error will
produce an error message which will give the exact location in the original source (i.e., file name,
line number and cursor postion of the error). If we run the following program:

moment

where

avg(x) = s / n

where

s = x fby hd s + next x;

// We have included a deliberate mistake

// The above definition should be

// s = x fby s + next x;

n = 1 fby n + 1;

end;

a = 7 fby 2 fby 4;
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moment = avg((a - m) * (a - m))

where

m is current m;

end;

m = avg(a);

end

the evaluator will give the following runtime error messages:

Evaluation begins .........

output( 0) : 0

--------------------------------------------

Evaluation time error on line 4, of file bug

s = x fby hd s + next x;

.............................^

arg of hd must be a list, not 7

Evaluation time error on line 4, of file bug

s = x fby hd s + next x;

..................................^

left arg of numeric binary operator

or condition of wvr or upon is ?

Evaluation time error on line 2, of file bug

avg(x) = s / n

...................^

... and so on

Error messages like the above will appear on the screen if a program containing type clashes is
evaluated. Notice the propagation of errors. It is possible to turn off error reporting (see the
UNIX manual entry).

Note: If the source program is changed, the program must be recompiled; otherwise the runtime
error messages given by the evaluator will be with reference to the source program used to produce
the current .i file.

If a program has a bug in it which is not a type error, that is some form of logical error, then
the filter function can be used to probe variables in much the same way as an technician uses
a scope and probe to debug a piece of faulty hardware. The function probe can be defined as
follows:

probe(name,expr) = filter(‘tee ’^filename,expr,‘’)

where filename = first name; end;

Note that in the above example the values of the suspect variable have been tapped and stored
in a file. On a system that allows a screen to be divided into multiple windows, the values of the
suspect variable could be displayed in one of the windows.

E.3.1 The arg function

When invoking the evaluator it is often desirable to supply the evaluator with the names of one or
more files as arguments. For example if we wanted to write the UNIX cat filter in pLucid we would
need to supply the name of the file that we wanted to cat. To achieve this, pLucid has the prefix
operator arg. The arg operator expects its argument to evaluate to a positive integer, which is
used to select a string from the argument list associated with the invocation of the evaluator. To
invoke the evaluator it is necessary to type the luval command, which has the following syntax:
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luval <option list> <filename>.i <argument list>

(See UNIX manual entry for more details). All that we need to say here is that the arg function
will select a string from the 〈argument list〉 of an evaluator invokation. If the argument of arg is
not a positive integer or there is no argument with that index, then arg yields the error object,
otherwise it yields the appropriate string in the argument list.

E.4 A facility for file inclusion

A simple file inclusion facility is provided. To include a file (containing perhaps some function
definitions) in another, just say

include "filename";

Note that any other statement on the same line as the include is ignored.
Included files may also have include statements, up to a level of ten.
There is also a standard inclusion directory where many useful functions are kept. In order to

include files from this directory in your program, use angle brackets instead of quotes, that is, say

include 〈filename〉;

where file name is a library file found in /ud/cscfac/faustini/lu/lib (this directory name will
probably be different on your machine).

E.5 UNIX manual entry for pLucid

lucomp, luval — pLucid compiler and evaluator

Synopsis

lucid filename

lucomp filename

luval [option] · · ·filename

Description

pLucid is an Arizona State University implementation of the language pLucid which runs on the
Berkeley 4.1 UNIX. To run a pLucid program, it must first be compiled using lucomp, which
compiles pLucid programs into intermediate expression code. If the input argument is the file
name “file” then the intermediate expression code will be output to a file named “file.i”,
which is then used as an argument to luval .

luval evaluates the intermediate code in a file whose name must end with “.i”. The following
options are understood by luval :

-d Produce a dump of the intermediate expression file onto the standard error (usually the
terminal).

-c Forces the evaluator into character input mode. In this mode all objects that travel along the
input streams associated with the standard input are assumed to be of type character. Thus
each character input (including newline) is treated by the evaluator as a string of length one
(i.e., character is not a type in pLucid). Note if the -c option is not used then the inputs
are assumed to be a stream of POP-2 data types separated by white space (i.e., newline,
tab, etc.)
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-s Forces the evaluator into string output mode. In this mode all objects that travel along
the output stream associated with the standard output are output as normal, except for
the following. When strings are output, they are stripped of their quotes and escaped
charaters (i.e., \n for newline, \33 for the character escape, . . . ) are output as the characters
themselves. In addition, no white space separates succesive outputs as the would when the
-s option is not used.

-p Used to inhibit prompting of input and outputs, i.e., the evaluator does not print output(10):
before producing the 11-th output. Similarly it does not input x(7): when asking for the
8th input for x.

-t0 Print a message every time a request is made for a variable during execution of the program.

-t1 Print a brief message about garbage collection each time that it occurs during execution of
the program.

-t2 Print more information about garbage collection each time it occurs.

-t5 Print information about action on the display as it occurs.

-t6 Print information each time a variable is defined by the evaluator.

-t9 In its usual mode, the interpreter reports all non-fatal runtime errors on the standard error.
When trace 9 is set, these runtime errors are discarded.

-t30 Prints a demand trace for variables. This is usually run to the exclusion of all other trace
options. A record can be made of the trace by piping the standard error to a file.

-t* New traces (and options) may be added to the system. To find out what they are, interrupt
the evaluator by using control-C and type h for help.

The evaluator can also be interrupted during execution to set or reset any of the traces, and to
inquire as to how much memory is used up so far, and in what fashion. Regular UNIX commands
can also be run, and then the program resumed. To interrupt the program, hit the interrupt key.
Then the following commands are available to you:

q Quit the evaluator.

c Continue interpreting.

sN Set trace option number N.

rN Reset trace option number N.

m Request information about memory usage.

!xxx Execute xxx as a UNIX command.

a Print out the retirement age of variables. (The garbage collector uses a retirement scheme
to collect ’old’ variables.)

d Dump the intermediate code.

t Print out a list of all the strings used in the program (including those entered dynamically).

h Print out the current height and limits of the evaluators run time stacks.

For more information see the pLucid programmers manual. lucid is a macro file that compiles
and runs pLucid programs.
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Bugs

When too many UNIX filters are spawned by the filter function then there may be problems
because of the limit on processes and pipes imposed by the UNIX operating system.

It is possible that when using filter there may be problems with the number of inputs
needed by the child process to respond to the parent. The evaluator is demand driven, UNIX is
data driven, therefore a UNIX process may require additional inputs (i.e., it is data driven) to
produce the required output.

Please report all bugs (however insignificant) to A. Faustini (i.e., mail faustini).
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Appendix F

Tables and Rules

F.1 Tables of operators

Numeric operators

operation syntax type of operands type of result
addition + numeric numeric
subtraction - numeric numeric
multiplication * numeric numeric
integer division div integer integer
real division / numeric numeric
exponentiation ** numeric numeric
modulus mod integer integer
numeric isnumber anything boolean
less than < numeric boolean
greater than > numeric boolean
equal eq numeric boolean
less than or equal <= numeric boolean
greater than or equal >= numeric boolean
not equal ne numeric boolean
sine sin numeric numeric
cosine cos numeric numeric
logarithm log numeric numeric
tangent tan numeric numeric
square root sqrt numeric numeric
absolute value abs numeric numeric
log10 log10 numeric numeric

Word operators

operation syntax operand type type of result
make a word out of a string mkword string word
recognize a word isword anything boolean

Boolean operators

operation syntax type of operands
conjunction and boolean
disjunction or boolean
negation not boolean
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String operators

operation syntax type of operands type of result
make a string out of a word mkstring word string
string recognition isstring anything boolean
string concatenation ^ string string
form a substring substr (string,integer,integer) string
length length anything number

List operators

operation syntax operand1 operand2 result
the head of a list hd list — anything
the tail of a list tl list — list
appending two lists <> list list list
construction operator :: anything list list
is the list empty? isnull list — boolean
is it an atom (not a list)? isatom anything — boolean
is it a list? islist anything — boolean

Conditional expressions

if expression

if boolean expression
then expression
else expression
fi

nested if expression

if boolean expression
then expression
elseif boolean expression
then expression
· · ·
else expression
fi

case expression

case expression
of

expression : expression ;

expression : expression ;

· · ·
expression : expression ;

default : expression ;

end
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cond expression

cond

boolean expression : expression ;

boolean expression : expression ;

· · ·
boolean expression : expression ;

default : expression ;

end

Lucid operators

operation syntax operand1 operand2 result
first first anything — anything
next next anything — anything
followed by fby anything anything anything
whenever whenever anything boolean anything
whenever wvr anything boolean anything
attime attime anything integer anything
as soon as asa anything boolean anything
upon upon anything boolean anything

is current declaration

identifier is current expression

F.2 Associativity and precedence rules

Associativity of operators

An infix operator is said to be ‘right associative’, e.g., fby, if for any expressions E1, E2, and E3,
the expression

X fby Y fby Z

is always interpreted as

X fby (Y fby Z).

Similarly, an infix operator is said to be ‘left associative’, e.g., asa, if for the expressions E1, E2,
and E3, the expression

E1 asa E2 asa E3

is always interpreted as

(E1 asa E2) asa E3.

The following table gives the associativity of infix operators in pLucid:

Associativity Operators
left +, -, *, /, div, mod, or, and, **, asa, attime,

whenever, wvr, upon, if–then–else, case
right ::, <>, fby, ^
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Precedence rules

These are rules to avoid clogging up programs with unnecessary brackets. For example if we say
that ‘* has higher precedence than +’ then an expression like 2 + 4 * 5 is always interpreted as
2 + (4 * 5).

We list here the hierarchy of precedences amongst pLucid operators. Operators with lowest
precedences are at the top of the list, and ones with highest precedences are at the bottom.

1 asa, upon, whenever, wvr, attime
2 fby

3 if–then–else, case, cond
4 ::, <>
5 or

6 and

7 not

8 eq, ne, <, <=, >, >=
9 +, -

10 *, div, /, mod
11 **

12 ^

13 first, next, sin, cos, tan, log, log10, hd,
tl, isnull, isnumber, isatom, isword, isstring,
mkword, mkstring, iserror, iseod, sqrt, abs, arg,
islist

The where clause

The where clause has the lowest precedence amongst other constructs in pLucid, so if E1, E2, and
E3 are expressions, then for any operators in pLucid, say fby and next, the expression

E1 fby E2 fby next E3

where

· · ·
end

is always interpreted as

(E1 fby E2 fby next E3)
where

· · ·
end

F.3 Reserved words

These identifiers are reserved as keywords

if hd true

then tl false

else isatom sin

elseif isnumber cos

fi isnull log

case nil is

of div current

default mod eod

where and error

end not isword
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first or isstring

next eq iserror

fby ne iseod

asa log10 substr

whenever tan mkstring

wvr abs mkword

upon sqrt length

cond filter attime

arg include islist
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Appendix G

Miscellaneous

G.1 Plucid grammar

We define here the pLucid syntax using the BNF formalism, where

::= is read as: 〈meta variable〉 is defined as 〈meta variable〉;

| is read as: 〈meta variable〉 or 〈meta variable〉;

{·} denotes possible repetition zero or more times of the enclosed construct.

〈program〉 ::= 〈expression〉
〈expression〉 ::= 〈constant〉

| 〈identifier〉
| error
| eod
| 〈prefix operator〉 〈expression〉
| 〈expression〉 〈infix operator〉 〈expression〉
| filter ( 〈expression〉 , 〈expression〉 , 〈expression〉 )
| substr ( 〈expression〉 , 〈expression〉 , 〈expression〉 )
| length 〈expression〉
| arg 〈expression〉
| 〈list expression〉
| 〈if expression〉
| 〈case expression〉
| 〈cond expression〉
| 〈function call〉
| 〈where clause〉

〈constant〉 ::= 〈numeric constant〉
| 〈word constant〉
| 〈string constant〉
| 〈list constant〉

217



218 APPENDIX G. MISCELLANEOUS

〈numeric constant〉 ::= 〈integer constant〉
| 〈real constant〉

〈integer constant〉 ::= 〈digit〉 { 〈digit〉 }
| 〈n-sign〉 〈integer constant〉

〈real constant〉 ::= 〈integer constant〉 . { 〈digit〉 }

〈n-sign〉 ::= ~

〈word constant〉 ::= 〈quote〉 〈word constant less the quotes〉 〈quote〉

〈word constant less the quotes〉 ::= 〈letter〉 { 〈alphanumeric〉 }
| 〈sign〉 { 〈sign〉 }
| 〈bracket〉
| 〈period〉
| 〈separator〉
| 〈quote〉

〈sign〉 ::= + | - | * | $ | & | = | < | > | : | # | ^
〈quote〉 ::= "

〈bracket〉 ::= ( | ) | [% | %] | (% | %)
〈period〉 ::= .

〈separator〉 ::= , | ;

〈string constant〉 ::= ‘ { 〈character〉 }’

〈character〉 ::= 〈Any ASCII character except the closing single quote ’〉

〈list constant〉 ::= nil | [ ]

| [ { 〈list constant element〉 } ]

〈list constant element〉 ::= 〈numeric constant〉
| 〈word constant less the quotes〉
| 〈string constant〉
| 〈list constant〉

〈alphanumeric〉 ::= 〈digit〉 | 〈letter〉

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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〈letter〉 ::= A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

〈identifier〉 ::= 〈letter〉 { 〈alphanumeric〉 }

〈prefix operator〉 ::= 〈p-numeric operator〉
| 〈p-word operator〉
| 〈p-string operator〉
| 〈p-list operator〉
| 〈p-lucid operator〉
| 〈p-special operator〉

〈p-numeric operator〉 ::= sin | cos | tan | sqrt | abs | log10 | log | isnumber
〈p-word operator〉 ::= isword | not | mkstring
〈p-string operator〉 ::= isstring | mkword
〈p-list operator〉 ::= hd | tl | isatom | isnull | islist
〈p-lucid operator〉 ::= first | next
〈p-special operator〉 ::= iseod | iserror

〈infix operator〉 ::= 〈i-numeric operator〉
| 〈i-word operator〉
| 〈i-string operator〉
| 〈i-list operator〉
| 〈i-lucid operator〉

〈i-numeric operator〉 ::= + | - | ** | * | div | mod | / | eq | ne | <= | < | > | >=
〈i-word operator〉 ::= and | or | eq | ne
〈i-string operator〉 ::= ^ | eq | ne
〈i-list operator〉 ::= <> | :: | eq | ne
〈i-lucid operator〉 ::= fby | whenever | wvr | upon | asa | attime

〈list expression〉 ::= [% %]

| [% { 〈expressions list〉 } %]

〈expressions list〉 ::= 〈expression item〉
| 〈expression item〉 , { 〈expressions list〉 }



220 APPENDIX G. MISCELLANEOUS

〈expression item〉 ::= 〈expression〉
| 〈list expression〉

〈if expression〉 ::= if 〈expression〉 then 〈expression〉 〈endif〉

〈endif〉 ::= else 〈expression〉 fi
| elseif 〈expression〉 then 〈expression〉〈endif〉

〈case expression〉 ::= case 〈expression〉 of 〈cbody〉 end

〈cond expression〉 ::= cond 〈cbody〉 end

〈cbody〉 ::= { 〈expression〉 : 〈expression〉 ; } 〈defaultcase〉

〈defaultcase〉 ::= default : 〈expression〉 ;

〈function call〉 ::= 〈identifier〉 ( 〈actuals list〉 )

〈actuals list〉 ::= 〈expression〉
| 〈expression〉 , 〈actuals list〉

〈where clause〉 ::= 〈expression〉 where 〈body〉 end

〈body〉 ::= 〈declarations list〉 〈definitions list〉

〈declarations list〉 ::= { 〈current declaration〉 ; }

〈current declaration〉 ::= 〈identifier〉 is current 〈expression〉

〈definitions list〉 ::= { 〈definition〉 ; }

〈definition〉 ::= 〈simple definition〉
| 〈function definition〉

〈simple definition〉 ::= 〈identifier〉 = 〈expression〉

〈function definition〉 ::= 〈identifier〉 ( 〈formals list〉 ) = 〈expression〉

〈formals list〉 ::= 〈identifier〉
| 〈identifier〉 , 〈formals list〉
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G.2 Syntax diagrams

In this section we introduce the syntax diagrams for pLucid. The reserved words of the language
appear underlined. However signs, numbers, and brackets are not, as this might lead to ambiguity

program :

expression //

expression :

constant //

identifier

error

eod

prefix operator expression

expression infix operator expression

list expression

if expression

case expression

cond expression

function call

where class

substr ( 3expression )

filter ( 3expression )

length expression

arg expression

constant :

numeric constant //

word constant

string constant

list constant

numeric constant :

integer constant //

real constant

integer constant :

digit //

~ oo
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real constant :

integer constant . digit //

oo

word constant :

" letter " //

oo alphanumeric

sign

oo

.

( ) (% %) [% %] .

.

.

. , ; " .

sign :

+ - * / $ & = < > : # ^

//

string constant :

‘ ’ //

oo ascii character except
the closing single quote

list constant :

nil //

[ ]

oo list element
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list element :

numeric constant //

word constant less the quotes

string constant

list constant

alphanumeric :

digit //

letter

letter :

Any uppercase or lowercase letter

//

digit :

0 1 2 3 4 5 6 7 8 9

//

identifier :

letter //

oo alphanumeric

prefix operator :

p-numeric operator //

p-word operator

p-string operator

p-list operator

p-lucid operator

p-special operator
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p-numeric operator :

sin //

cos

tan

sqrt

abs

log

log10

isnumber

p-word operator :

not //

isword

mkstring

p-string operator :

isstring //

mkword

p-list operator :

hd //

tl

islist

isatom

isnull

p-lucid operator :

first //

next

p-special operator :

iseod //

iserror
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infix operator :

i-numeric operator //

i-word operator

i-string operator

i-list operator

i-lucid operator

i-numeric operator :

+ //

-

*

div

mod

/

**

eq

ne

<

>

<=

>=

i-word operator :

or //

and

eq

ne

i-string operator :

^ //

eq

ne
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i-list operator :

<> //

::

eq

ne

i-lucid operator :

fby //

whenever

wvr

upon

asa

attime

3expression :

expression , expression , expression //

list expression :

[% expression item %] //

expression item :

expression //

list expression

if expression :

if expression then expression endif //

endif :

else expression fi //

elseif expression then expression endif

case expression :

case expression of case body end //
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case body :

default : expression ; end //

oo ; expression ; expression

cond expression :

cond expression end //

cond body :

default : expression ; end //

oo ; expression ; expression

function call :

identifier ( actual list ) //

actual list :

expression //

oo expression ,

where clause :

expression where body end //

body :

//

oo declaration oo definition

declaration :

identifier is current expresiion ; //

definition :

simple definition //

function definition
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simple definition :

identifier = expression ; //

function definition :

identifier ( identifier ) = expression ; //

oo ;

G.3 Programming example

The following is an example of how a large program would be organised in pLucid. The example
is of a screen editor and it illustrates many of the features of the pLucid system.

The macro used to run the screen editor

trap ’reset’ 2

stty -echo cbreak;

luval -t10 -c -s screen.i Sl 2>prompts;

stty echo -cbreak

// viscid - a vi-like-screen-editor-in-Lucid

chargen(cdecode(C))

where

cdecode(C) = cmd // turn raw stream of chars into stream of commands

where

include "cdecoder";

end;

chargen(cmd) = chars // generate the control chars from the commands

where

include "chargen";

include "workingtext"; // variables representing current state of working text

include "escseqs"; // control sequences for the pt100b

include "strings"; // useful string operations

include "gather"; // functions for turning lists into streams

// and vice versa

end;

end

The file cdecoder.

namedcmd = case C of //the command named by C

‘i’:"beginsert"; //begin inserting text

‘h’:"left"; //move cursor left

‘ ’:"right"; //move cursor right

‘k’:"up"; //move cursor up one line

‘j’:"down"; //move cursor down one line

‘o’:"open"; //open a line below the cursor

‘x’:"chdel"; //delete character

‘w’:"write"; //write to file

‘X’:"linedel"; //delete current line

‘D’: "ldel"; //delete line to right of cursor
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‘Z’:"finish"; //write and exit

default:"error";

end;

cmd = namedcmd fby

case cmd of

"beginsert" : if next C eq ‘\33’ then "endinsert"

else "moreinsert" fi;

"moreinsert" : if next C eq ‘\33’ then "endinsert"

else "moreinsert" fi;

"open" : "moreinsert";

"finish" : "quit";

default : next namedcmd;

end;

The file chargen.

//generate the stream of screen control characters

chars = //stream of strings sent to terminal

CLEAR^HOME^lineconc(initialtext)^HOME fby

case cmd of

"moreinsert" : C^rhs^back(length(rhs));

"right" : RIGHT;

"left" : LEFT;

"up" : UP;

"down" : DOWN;

"chdel" : stl(rhs)^‘ ’^back(length(rhs));

"open" : DSCROLL(lineno+1);

"ldel" : space(length(rhs))^POSITION(lineno,colno-1);

"linedel" : USCROLL(lineno) ^ if llines eq [] then UP else ‘’ fi;

"write" : if iseod output then BEEP else BEEP fi;

"quit" : if iseod output then eod else eod fi;

"close" : NULL;

"finish" : BOTTOM;

default : ‘’;

end;

lineno = length(ulines)+1;

colno = 1 fby case cmd of

"left" : colno-1;

"right" : colno+1;

"endinsert" : colno+length(insert);

"ldel" : colno-1;

"open" : 1;

"linedel" : if llines eq [] then lineno-1 else lineno fi;

default : colno;

end;

insert = ‘’ fby if cmd eq "moreinsert" then insert^C else ‘’ fi;

rhs = srear(cline,colno-1) ;

initialtext = if filename eq ‘’ then [] else linesof(filename) fi;
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filename = arg(1);

output = first filter(‘cat >’^filename,TEXT fby eod,‘s’)

where TEXT is current text; end;

text = lineconc(ulines <> [%cline%] <> llines);

The file workingtext.

//the definitions of the variables which represent the

//the current working text

ulines = //list of lines above the cursor

[] fby

case cmd of

"up" : tl(ulines);

"down" : cline :: ulines;

"open" : cline :: ulines;

"linedel" : if llines ne [] then ulines else tl(ulines) fi;

default : ulines;

end;

llines = //list of lines below the cursor

tl(initialtext) fby

case cmd of

"up" : cline :: llines;

"down" : tl(llines);

"linedel" : if llines ne [] then tl(llines) else [] fi;

default : llines;

end;

cline = // the line the cursor is on

hd(initialtext) fby

case cmd of

"up" : hd(ulines);

"down" : hd(llines);

"endinsert" : sfront(cline,colno-1)^insert^srear(cline,colno-1);

"chdel" : sfront(cline,colno-1)^srear(cline,colno);

"ldel" : sfront(cline,colno-1);

"linedel" : if llines ne [] then hd(llines) else hd(ulines) fi;

"open" : ‘’;

default : cline;

end;

The file escseqs.

//the "escape sequences" for the pt100b

BEEP = ‘\7’;

CLEAR = ‘\33[2J’; // clear the screen

HOME = ‘\33[;H’; // send cursor to upper right hand corner

RIGHT = ‘\33[C’; // move right

LEFT = ‘\b’; // move left

UP = ‘\33M’; // up one row
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DOWN = ‘\33D’ ; // down one row

BOTTOM = ‘\33[24;1H’; // go to bottom left hand corner

DSCROLL(i) = // control chars to scroll down lines i thru 24

// cursor left at beginning of line i (now blank)

‘\33[’ ^ n ^ ‘;24r\33[’ ^ n ^ ‘;1H\33M\33[1;24r\33[’ ^ n ^ ‘;1H’

where

n = numeral(i);

end;

USCROLL(i) = // control chars to scroll up lines i thru 24

// cursor at beginning of line i

‘\33[’ ^ n ^ ‘;24r\33[24;1H\33D\33[1;24r\33[’ ^ n ^ ‘;1H’

where

n = numeral(i);

end;

POSITION(r,c) = // move cursor to the rth row and cth column

‘\33[’ ^ numeral(r) ^ ‘;’ ^ numeral(c) ^ ‘H’;

The file strings.

//a package of functions for manipulating strings

stl(s) = substr(s,2,length(s));

sfront(s,n) = substr(s,1,n);

srear(s,n) = substr(s,n+1,length(s));

lconc(h) = first s //concat a list of strings

where

H is current h;

eltH = element(H);

s = if iseod eltH then ‘’ else eltH^next s fi;

end;

space(n) = substr(‘ ’,1,n);

back(n) = substr(‘\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b,1,n);

//(the strings of spaces and backspaces have been shortened for this listing)

numeral(n) = s asa k eq 0

where

N is current n;

k = N fby k div 10;

r = (k mod 10) +1;

digit = substr(‘0123456789’,r,r);

s = ‘’ fby digit^s;

end;

linesof(f) = //a list of the lines in the file f, each line a string

first linelist

where

F is current f;

c = filter(‘cat -u ’ ^ F,0,‘ci’);

ll = if c eq ‘\n’ then ‘’ else c ^ next ll fi;

line = ll whenever true fby c eq ‘\n’ ;
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linelist = if iseod line then [] else line :: next linelist fi;

end;

concup(s) = first t //concatenate a stream of strings

where

t = if iseod s then ‘’ else s ^ next t fi;

end;

lineconc(l) = if iseod l then eod //concatenate a list of strings

else (concup( element(L)^‘\n’ ) //with newlines between

where L is current l; end) fi;

The file gather.

//filters for transforming finite lists into streams and vie versa,

//streams ’terminated’ by eod

element(x) = hd(tx) // the stream of elements of the list x

where

tx = if first x eq [] then eod else first x fi fby

if tl(tx) ne [] then tl(tx) else eod fi;

end;

gather(x) = first L // a list of the values in the stream x

where

L = if iseod x then [] else x :: next L fi;

end;

linkup(x) = first L // concatenate a stream of lists

where

L = if iseod x then [] else x <> next L fi;

end;

ever(p) = first q // true if p is ever true

where

q = if iseod p then false

elseif p then true

else next q fi;

end;


